IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v170y2016icp76-91.html
   My bibliography  Save this article

Dynamic thermal response of building material layers in aspect of their moisture content

Author

Listed:
  • Kontoleon, K.J.
  • Giarma, C.

Abstract

This paper investigates the impact of moisture content on the thermal inertia parameters of building material layers. Moisture variation affects the energy storage and therefore the energy gains/losses through buildings. To this effect the decrement factor and time lag are determined for three types of concrete layers and one of solid clay-bricks masonry layer. Their consideration is essential to enhance the design of building elements, from a thermal point of view, when exposed to varying moisture content conditions. Moisture content and relative humidity variations of each analysed layer, as defined by specific moisture storage functions, are shown to interrelate non-linearly with the layer resistor–capacitor circuit section parameters (thermal conductivity and volumetric heat capacity) showing notable consequences on the thermal inertia parameters. The dynamic thermal analysis is accomplished by using the thermal-circuit modelling approach and the nodal solution method. The deterioration of decrement factor and time lag due to moisture content are illustrated by appropriate metrics. Computer results for the studied layers with thicknesses varying from 10cm to 50cm show the influence of the variation of relative humidity and thickness on the decrement factor and time lag.

Suggested Citation

  • Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
  • Handle: RePEc:eee:appene:v:170:y:2016:i:c:p:76-91
    DOI: 10.1016/j.apenergy.2016.01.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916300940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "A simple method for the estimation of thermal insulation thickness," Applied Energy, Elsevier, vol. 87(2), pages 613-619, February.
    2. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.
    3. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    4. Al-Sanea, Sami A. & Zedan, M.F. & Al-Hussain, S.N., 2013. "Effect of masonry material and surface absorptivity on critical thermal mass in insulated building walls," Applied Energy, Elsevier, vol. 102(C), pages 1063-1070.
    5. Kontoleon, K.J. & Theodosiou, Th.G. & Tsikaloudaki, K.G., 2013. "The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements," Applied Energy, Elsevier, vol. 112(C), pages 325-337.
    6. Mavromatidis, Lazaros Elias & EL Mankibi, Mohamed & Michel, Pierre & Santamouris, Mat, 2012. "Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones," Applied Energy, Elsevier, vol. 92(C), pages 480-491.
    7. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    8. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    9. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    10. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    2. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
    3. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    5. Petojević, Zorana & Gospavić, Radovan & Todorović, Goran, 2018. "Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications," Applied Energy, Elsevier, vol. 228(C), pages 468-486.
    6. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    7. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    8. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    9. Paweł Krause & Artur Nowoświat, 2019. "Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene," Energies, MDPI, vol. 13(1), pages 1-17, December.
    10. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    2. Corrado, Vincenzo & Paduos, Simona, 2016. "New equivalent parameters for thermal characterization of opaque building envelope components under dynamic conditions," Applied Energy, Elsevier, vol. 163(C), pages 313-322.
    3. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
    4. Kontoleon, K.J. & Theodosiou, Th.G. & Tsikaloudaki, K.G., 2013. "The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements," Applied Energy, Elsevier, vol. 112(C), pages 325-337.
    5. Mavromatidis, Lazaros Elias & EL Mankibi, Mohamed & Michel, Pierre & Santamouris, Mat, 2012. "Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones," Applied Energy, Elsevier, vol. 92(C), pages 480-491.
    6. Mavromatidis, Lazaros Elias & Bykalyuk, Anna & Lequay, Hervé, 2013. "Development of polynomial regression models for composite dynamic envelopes’ thermal performance forecasting," Applied Energy, Elsevier, vol. 104(C), pages 379-391.
    7. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    8. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    9. Bond, Danielle E.M. & Clark, William W. & Kimber, Mark, 2013. "Configuring wall layers for improved insulation performance," Applied Energy, Elsevier, vol. 112(C), pages 235-245.
    10. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    11. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    12. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    13. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    14. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    15. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    16. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    17. Fathipour, Reza & Hadidi, Amin, 2017. "Analytical solution for the study of time lag and decrement factor for building walls in climate of Iran," Energy, Elsevier, vol. 134(C), pages 167-180.
    18. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    19. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    20. Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:170:y:2016:i:c:p:76-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.