IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p75-d300849.html
   My bibliography  Save this article

Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene

Author

Listed:
  • Paweł Krause

    (Faculty of Civil Engineering, Silesian University of Technology, Gliwice 44–100, Poland)

  • Artur Nowoświat

    (Faculty of Civil Engineering, Silesian University of Technology, Gliwice 44–100, Poland)

Abstract

This article presents the research studies aimed at identifying the behavior of expanded polystyrene with the addition of graphite in the conditions of exposure to solar radiation. For this purpose, a series of in situ tests and laboratory studies were carried out. Three types of material were tested, i.e. expanded polystyrene (EPS) (white polystyrene), polystyrene with the addition of graphite (gray polystyrene) and two-layer polystyrene (gray bottom layer and white top layer). Temperature distributions on the surfaces of the panels in field and laboratory conditions were determined. The distributions of temperature were recorded at varied wind impact (field conditions and laboratory conditions) and at varied impact of solar radiation (laboratory conditions). Based on the conducted experiments, differences in temperature distribution on the surfaces of the tested panels were determined. In addition, geometric changes and deformation levels of the tested white and gray expanded polystyrene panels exposed to artificial sun radiation were determined in laboratory conditions.

Suggested Citation

  • Paweł Krause & Artur Nowoświat, 2019. "Experimental Studies Involving the Impact of Solar Radiation on the Properties of Expanded Graphite Polystyrene," Energies, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:75-:d:300849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/75/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/75/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Caniato & Andrea Gasparella, 2019. "Discriminating People’s Attitude towards Building Physical Features in Sustainable and Conventional Buildings," Energies, MDPI, vol. 12(8), pages 1-27, April.
    2. Ye, Rongda & Lin, Wenzhu & Yuan, Kunjie & Fang, Xiaoming & Zhang, Zhengguo, 2017. "Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 193(C), pages 325-335.
    3. Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyue Zhu & Bo Gao & Xudong Yang & Zhong Yu & Ji Ni, 2021. "Modifying Building Energy-Saving Design Based on Field Research into Climate Features and Local Residents’ Habits," Energies, MDPI, vol. 14(2), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengxun Jin & Jonghyeob Kim & Chang-taek Hyun & Sangwon Han, 2019. "Development of a Model for Predicting Probabilistic Life-Cycle Cost for the Early Stage of Public-Office Construction," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    2. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    3. Theodosiou, Theodoros & Tsikaloudaki, Katerina & Kontoleon, Karolos & Giarma, Christina, 2021. "Assessing the accuracy of predictive thermal bridge heat flow methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Xu, Bin & Xie, Xing & Pei, Gang & Chen, Xing-ni, 2020. "New view point on the effect of thermal conductivity on phase change materials based on novel concepts of relative depth of activation and time rate of activation: The case study on a top floor room," Applied Energy, Elsevier, vol. 266(C).
    5. Antonio Millán-Jiménez & Rafael Herrera-Limones & Álvaro López-Escamilla & Emma López-Rubio & Miguel Torres-García, 2021. "Confinement, Comfort and Health: Analysis of the Real Influence of Lockdown on University Students during the COVID-19 Pandemic," IJERPH, MDPI, vol. 18(11), pages 1-15, May.
    6. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    7. Lixi Zhang & Kai Feng & Zhendong Xie & Kangbo Wang, 2022. "Study on Heat Transfer Process and Fresh Water Output Performance of Phase Change Heat Storage Dehumidifier," Energies, MDPI, vol. 15(4), pages 1-21, February.
    8. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    9. Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
    10. Xuemin Sui & Huajiang Wang & Ming Qu & Huitao Liu, 2020. "Thermal Response Characteristics of Intermittently Cooled Room with Tube-Embedded Cooling Slab and Optimization of Intermittent Control," Energies, MDPI, vol. 13(7), pages 1-28, March.
    11. Umberto Berardi & Lamberto Tronchin & Massimiliano Manfren & Benedetto Nastasi, 2018. "On the Effects of Variation of Thermal Conductivity in Buildings in the Italian Construction Sector," Energies, MDPI, vol. 11(4), pages 1-17, April.
    12. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    13. Rafael Herrera-Limones & Antonio Millán-Jiménez & Álvaro López-Escamilla & Miguel Torres-García, 2020. "Health and Habitability in the Solar Decathlon University Competitions: Statistical Quantification and Real Influence on Comfort Conditions," IJERPH, MDPI, vol. 17(16), pages 1-25, August.
    14. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    15. Huang, Junchao & Yu, Jinghua & Yang, Hongxing, 2018. "Effects of key factors on the heat insulation performance of a hollow block ventilated wall," Applied Energy, Elsevier, vol. 232(C), pages 409-423.
    16. Rongda Ye & Xiaoming Fang & Zhengguo Zhang, 2021. "Numerical Study on Energy-Saving Performance of a New Type of Phase Change Material Room," Energies, MDPI, vol. 14(13), pages 1-18, June.
    17. Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
    18. Bin Qian & Tao Yu & Haiquan Bi & Bo Lei, 2019. "Measurements of Energy Consumption and Environment Quality of High-Speed Railway Stations in China," Energies, MDPI, vol. 13(1), pages 1-22, December.
    19. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
    20. Petojević, Zorana & Gospavić, Radovan & Todorović, Goran, 2018. "Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications," Applied Energy, Elsevier, vol. 228(C), pages 468-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:75-:d:300849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.