IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v39y2012i1p347-355.html
   My bibliography  Save this article

The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness

Author

Listed:
  • Ozel, Meral

Abstract

In this study, the influence of exterior surface solar absorptivity on the thermal characteristics and optimum insulation thickness is investigated under dynamic thermal conditions. Numerical model based on an implicit finite difference method under steady periodic conditions is used to determine thermal characteristics such as yearly cooling and heating transmission loads, yearly averaged time lag and decrement factor. Later, these loads are used as inputs to an economic model for the determination of the optimum insulation thickness. The investigation is carried out for a south-facing wall in the climatic conditions of Elazığ, Turkey. Solar absorptance of external surface is assumed to be varying from 0 to 1 with an increment of 0.2. Extruded polystyrene as insulation material is selected. As the absorptance increases, heating and total transmission loads decrease while cooling transmission load increase. It is seen that the increase rate in the cooling load ranges from 66.26% to 331.28% while reduction rates in the heating and total loads range from 6.72% to 33.65% and from 2.57% to 12.90%, respectively. The results show that for uninsulated and insulated walls, solar absorptivity has a great effect on the yearly transmission loads while it has a small effect on the yearly averaged time lag. On the other hand, decrement factor is almost unaffected by solar absorptance. The results also show that solar absorptivity has a very small effect on the optimum insulation thickness and payback period, but a more significant effect on energy savings.

Suggested Citation

  • Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
  • Handle: RePEc:eee:renene:v:39:y:2012:i:1:p:347-355
    DOI: 10.1016/j.renene.2011.08.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Sanea, Sami A. & Zedan, M.F. & Al-Ajlan, Saleh A., 2005. "Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model," Applied Energy, Elsevier, vol. 82(4), pages 313-330, December.
    2. DombaycI, Ö. Altan & Gölcü, Mustafa & Pancar, Yasar, 2006. "Optimization of insulation thickness for external walls using different energy-sources," Applied Energy, Elsevier, vol. 83(9), pages 921-928, September.
    3. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    4. Sisman, Nuri & Kahya, Emin & Aras, Nil & Aras, Haydar, 2007. "Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey's different degree-day regions," Energy Policy, Elsevier, vol. 35(10), pages 5151-5155, October.
    5. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    6. Hasan, Afif, 1999. "Optimizing insulation thickness for buildings using life cycle cost," Applied Energy, Elsevier, vol. 63(2), pages 115-124, June.
    7. Kaynakli, O., 2008. "A study on residential heating energy requirement and optimum insulation thickness," Renewable Energy, Elsevier, vol. 33(6), pages 1164-1172.
    8. Yu, Jinghua & Yang, Changzhi & Tian, Liwei & Liao, Dan, 2009. "A study on optimum insulation thicknesses of external walls in hot summer and cold winter zone of China," Applied Energy, Elsevier, vol. 86(11), pages 2520-2529, November.
    9. Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    2. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    3. Luis M. López-Ochoa & Jesús Las-Heras-Casas & Luis M. López-González & César García-Lozano, 2020. "Energy Renovation of Residential Buildings in Cold Mediterranean Zones Using Optimized Thermal Envelope Insulation Thicknesses: The Case of Spain," Sustainability, MDPI, vol. 12(6), pages 1-34, March.
    4. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    5. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    6. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    7. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    8. Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
    9. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    10. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    11. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    12. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    2. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    3. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    4. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    5. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    6. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    7. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    8. Nematchoua, Modeste Kameni & Raminosoa, Chrysostôme R.R. & Mamiharijaona, Ramaroson & René, Tchinda & Orosa, José A. & Elvis, Watis & Meukam, Pierre, 2015. "Study of the economical and optimum thermal insulation thickness for buildings in a wet and hot tropical climate: Case of Cameroon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1192-1202.
    9. Ucar, Aynur & Balo, Figen, 2009. "Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey," Applied Energy, Elsevier, vol. 86(5), pages 730-736, May.
    10. Mahlia, T.M.I. & Iqbal, A., 2010. "Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives," Energy, Elsevier, vol. 35(5), pages 2242-2250.
    11. Özkan, Derya B. & Onan, Cenk, 2011. "Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1331-1342, April.
    12. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    13. Aditya, L. & Mahlia, T.M.I. & Rismanchi, B. & Ng, H.M. & Hasan, M.H. & Metselaar, H.S.C. & Muraza, Oki & Aditiya, H.B., 2017. "A review on insulation materials for energy conservation in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1352-1365.
    14. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    15. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    16. Pan, Dongmei & Chan, Mingyin & Deng, Shiming & Lin, Zhongping, 2012. "The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates," Applied Energy, Elsevier, vol. 97(C), pages 313-318.
    17. Küçüktopcu, Erdem & Cemek, Bilal, 2018. "A study on environmental impact of insulation thickness of poultry building walls," Energy, Elsevier, vol. 150(C), pages 583-590.
    18. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    19. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    20. Yvan Dutil & Daniel Rousse, 2012. "Energy Costs of Energy Savings in Buildings: A Review," Sustainability, MDPI, vol. 4(8), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:39:y:2012:i:1:p:347-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.