New equivalent parameters for thermal characterization of opaque building envelope components under dynamic conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2015.10.123
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ascione, Fabrizio & Bianco, Nicola & De Masi, Rosa Francesca & de’ Rossi, Filippo & Vanoli, Giuseppe Peter, 2014. "Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season," Applied Energy, Elsevier, vol. 113(C), pages 990-1007.
- Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
- Al-Sanea, Sami A. & Zedan, M.F. & Al-Hussain, S.N., 2013. "Effect of masonry material and surface absorptivity on critical thermal mass in insulated building walls," Applied Energy, Elsevier, vol. 102(C), pages 1063-1070.
- Kontoleon, K.J. & Theodosiou, Th.G. & Tsikaloudaki, K.G., 2013. "The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements," Applied Energy, Elsevier, vol. 112(C), pages 325-337.
- Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
- Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
- Kontoleon, K.J. & Eumorfopoulou, E.A., 2008. "The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region," Renewable Energy, Elsevier, vol. 33(7), pages 1652-1664.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Reilly, Aidan & Kinnane, Oliver, 2017. "The impact of thermal mass on building energy consumption," Applied Energy, Elsevier, vol. 198(C), pages 108-121.
- Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
- Hudobivnik, Blaž & Pajek, Luka & Kunič, Roman & Košir, Mitja, 2016. "FEM thermal performance analysis of multi-layer external walls during typical summer conditions considering high intensity passive cooling," Applied Energy, Elsevier, vol. 178(C), pages 363-375.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
- Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.
- Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
- Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
- Kontoleon, K.J. & Theodosiou, Th.G. & Tsikaloudaki, K.G., 2013. "The influence of concrete density and conductivity on walls’ thermal inertia parameters under a variety of masonry and insulation placements," Applied Energy, Elsevier, vol. 112(C), pages 325-337.
- Rehman, Hassam Ur, 2017. "Experimental performance evaluation of solid concrete and dry insulation materials for passive buildings in hot and humid climatic conditions," Applied Energy, Elsevier, vol. 185(P2), pages 1585-1594.
- Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
- Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
- Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
- Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
- Rodrigues, Eugénio & Fernandes, Marco S. & Gaspar, Adélio Rodrigues & Gomes, Álvaro & Costa, José J., 2019. "Thermal transmittance effect on energy consumption of Mediterranean buildings with different thermal mass," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Verbeke, Stijn & Audenaert, Amaryllis, 2018. "Thermal inertia in buildings: A review of impacts across climate and building use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2300-2318.
- Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
- Kyriakidis, Andreas & Michael, Aimilios & Illampas, Rogiros & Charmpis, Dimos C. & Ioannou, Ioannis, 2018. "Thermal performance and embodied energy of standard and retrofitted wall systems encountered in Southern Europe," Energy, Elsevier, vol. 161(C), pages 1016-1027.
- Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
- Mavromatidis, Lazaros Elias & EL Mankibi, Mohamed & Michel, Pierre & Santamouris, Mat, 2012. "Numerical estimation of time lags and decrement factors for wall complexes including Multilayer Thermal Insulation, in two different climatic zones," Applied Energy, Elsevier, vol. 92(C), pages 480-491.
- Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
- Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
- Borderon, Julien & Virgone, Joseph & Cantin, Richard, 2015. "Modeling and simulation of a phase change material system for improving summer comfort in domestic residence," Applied Energy, Elsevier, vol. 140(C), pages 288-296.
More about this item
Keywords
Building envelope design; Building energy performance simulation; Dynamic thermal characterization; Opaque envelope; Summer conditions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:313-322. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.