IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp925-938.html
   My bibliography  Save this article

A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia

Author

Listed:
  • Saafi, Khawla
  • Daouas, Naouel

Abstract

The interaction between the roof thermal insulation and the cool roof effects is assessed in order to determine an optimum combination of the two measures. Dynamic simulations and estimation of the annual energy requirements are performed using EnergyPlus. Two roof structures, three insulation materials and three reflectivity scenarios are considered while taking into account the ageing of the cool material. An energy-based optimization shows that the summertime benefits induced by the rise of reflectivity outweigh the winter penalties, and that the optimum value of the roof reflectivity is the highest possible value. Moderate roof insulation levels with cool roof surfaces of as high as possible reflectivity values are recommended in the Tunisian climate. A 20-year life-cycle cost analysis proves the cost-effectiveness of aged and restored cool roof scenarios for uninsulated roofs with a net saving up to 44.53 TND/m2 and a payback period of 3.4 years. In terms of maximum net savings and considering the environmental benefits of cool roofs, we recommend an optimum combination of the restored concrete-based roof and a 5.4 cm-rockwool thickness. A sensitivity analysis shows that the uncertainties in the economic parameters and changes in the set-point temperatures have a noticeable effect on the optimal parameters.

Suggested Citation

  • Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:925-938
    DOI: 10.1016/j.energy.2018.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akeiber, Hussein & Nejat, Payam & Majid, Muhd Zaimi Abd. & Wahid, Mazlan A. & Jomehzadeh, Fatemeh & Zeynali Famileh, Iman & Calautit, John Kaiser & Hughes, Ben Richard & Zaki, Sheikh Ahmad, 2016. "A review on phase change material (PCM) for sustainable passive cooling in building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1470-1497.
    2. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    3. Ghrab-Morcos, Nadia, 1991. "Energy and financial considerations related to wall design for a conditioned cell in Tunisian conditions," Renewable Energy, Elsevier, vol. 1(1), pages 145-159.
    4. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    5. Al-Sanea, Sami A. & Zedan, M.F. & Al-Ajlan, Saleh A., 2005. "Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model," Applied Energy, Elsevier, vol. 82(4), pages 313-330, December.
    6. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    7. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    8. Papakostas, K. & Mavromatis, T. & Kyriakis, N., 2010. "Impact of the ambient temperature rise on the energy consumption for heating and cooling in residential buildings of Greece," Renewable Energy, Elsevier, vol. 35(7), pages 1376-1379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    2. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    3. Xiaojun Liu & Xin Chen & Mehdi Shahrestani, 2020. "Optimization of Insulation Thickness of External Walls of Residential Buildings in Hot Summer and Cold Winter Zone of China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
    5. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    6. Cristina Piselli & Anna Laura Pisello & Mohammad Saffari & Alvaro de Gracia & Franco Cotana & Luisa F. Cabeza, 2019. "Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions," Energies, MDPI, vol. 12(17), pages 1-20, August.
    7. Pourghorban, Arash & Kari, Behrouz Mohammad & Asoodeh, Hedyeh, 2022. "Holistic survey of reflective insulation systems (RISs) in vertical applications in building envelopes under various climatic conditions," Energy, Elsevier, vol. 242(C).
    8. Gao, Dian-ce & Sun, Yongjun & Zhou, Chuanwen & Bu, Yu & Bao, Yan & Chai, Jiale, 2020. "Numerical and experimental study on a double-layered coating design using supplemental property particles for achieving user-desired thermal and aesthetic performance," Energy, Elsevier, vol. 211(C).
    9. Domenico Mazzeo & Giuseppe Oliveti, 2020. "Advanced Innovative Solutions for Final Design in Terms of Energy Sustainability of Nearly/Net Zero Energy Buildings (nZEB)," Sustainability, MDPI, vol. 12(24), pages 1-5, December.
    10. Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
    11. Carlos-Antonio Domínguez-Torres & Helena Domínguez-Torres & Antonio Domínguez-Delgado, 2021. "Optimization of a Combination of Thermal Insulation and Cool Roof for the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    12. Jung Ho Kim & Young Il Kim, 2021. "Optimal Combination of External Wall Insulation Thickness and Surface Solar Reflectivity of Non-Residential Buildings in the Korean Peninsula," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    13. Jiang, Lina & Gao, Yafeng & Zhuang, Chaoqun & Feng, Chi & Zhang, Xiaotong & Guan, Jingxuan, 2024. "Experiment verification and simulation optimization of phase change material cool roof in summer -- A case study of Chongqing, China," Energy, Elsevier, vol. 293(C).
    14. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    15. Domínguez-Torres, Carlos-Antonio & Suárez, Rafael & León-Rodríguez, Angel Luis & Domínguez-Delgado, Antonio, 2024. "Parametric energy optimization of a ventilated facade with windows in Mediterranean climates," Renewable Energy, Elsevier, vol. 227(C).
    16. Zheng, Zhihang & Xiao, Jian & Yang, Ying & Xu, Feng & Zhou, Jin & Liu, Hongcheng, 2024. "Optimization of exterior wall insulation in office buildings based on wall orientation: Economic, energy and carbon saving potential in China," Energy, Elsevier, vol. 290(C).
    17. Frida Bazzocchi & Cecilia Ciacci & Vincenzo Di Naso, 2021. "Evaluation of Environmental and Economic Sustainability for the Building Envelope of Low-Carbon Schools," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daouas, Naouel, 2016. "Impact of external longwave radiation on optimum insulation thickness in Tunisian building roofs based on a dynamic analytical model," Applied Energy, Elsevier, vol. 177(C), pages 136-148.
    2. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    3. Antonio Dominguez-Delgado & Helena Domínguez-Torres & Carlos-Antonio Domínguez-Torres, 2020. "Energy and Economic Life Cycle Assessment of Cool Roofs Applied to the Refurbishment of Social Housing in Southern Spain," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    4. Ozel, Meral, 2012. "The influence of exterior surface solar absorptivity on thermal characteristics and optimum insulation thickness," Renewable Energy, Elsevier, vol. 39(1), pages 347-355.
    5. Bektas Ekici, Betul & Aytac Gulten, Ayca & Aksoy, U. Teoman, 2012. "A study on the optimum insulation thicknesses of various types of external walls with respect to different materials, fuels and climate zones in Turkey," Applied Energy, Elsevier, vol. 92(C), pages 211-217.
    6. Axaopoulos, Ioannis & Axaopoulos, Petros & Gelegenis, John, 2014. "Optimum insulation thickness for external walls on different orientations considering the speed and direction of the wind," Applied Energy, Elsevier, vol. 117(C), pages 167-175.
    7. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    8. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    9. Sevindir, M. Kemal & Demir, Hakan & Ağra, Özden & Atayılmaz, Ş. Özgür & Teke, İsmail, 2017. "Modelling the optimum distribution of insulation material," Renewable Energy, Elsevier, vol. 113(C), pages 74-84.
    10. Al-Sanea, Sami A. & Zedan, M.F., 2011. "Improving thermal performance of building walls by optimizing insulation layer distribution and thickness for same thermal mass," Applied Energy, Elsevier, vol. 88(9), pages 3113-3124.
    11. Daouas, Naouel, 2011. "A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads," Applied Energy, Elsevier, vol. 88(1), pages 156-164, January.
    12. Berger, Julien & Mendes, Nathan, 2017. "An innovative method for the design of high energy performance building envelopes," Applied Energy, Elsevier, vol. 190(C), pages 266-277.
    13. Jihui Yuan & Craig Farnham & Kazuo Emura, 2017. "Optimum Insulation Thickness for Building Exterior Walls in 32 Regions of China to Save Energy and Reduce CO 2 Emissions," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    14. Mazzeo, D. & Oliveti, G. & Arcuri, N., 2016. "Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime," Applied Energy, Elsevier, vol. 164(C), pages 509-531.
    15. Ozel, Meral, 2011. "Effect of wall orientation on the optimum insulation thickness by using a dynamic method," Applied Energy, Elsevier, vol. 88(7), pages 2429-2435, July.
    16. Axaopoulos, Ioannis & Axaopoulos, Petros & Panayiotou, Gregoris & Kalogirou, Soteris & Gelegenis, John, 2015. "Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics," Energy, Elsevier, vol. 90(P1), pages 939-952.
    17. Pan, Dongmei & Chan, Mingyin & Deng, Shiming & Lin, Zhongping, 2012. "The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates," Applied Energy, Elsevier, vol. 97(C), pages 313-318.
    18. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    19. Jie, Pengfei & Zhang, Fenghe & Fang, Zhou & Wang, Hongbo & Zhao, Yunfeng, 2018. "Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions," Energy, Elsevier, vol. 159(C), pages 1132-1147.
    20. Kontoleon, K.J. & Giarma, C., 2016. "Dynamic thermal response of building material layers in aspect of their moisture content," Applied Energy, Elsevier, vol. 170(C), pages 76-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:925-938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.