IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i8p1645-d1221736.html
   My bibliography  Save this article

Impact of Varying Mass Concentrations of Ammonia Nitrogen on Biogas Production and System Stability of Anaerobic Fermentation

Author

Listed:
  • Yongping Li

    (Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China
    Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province) of MOARA, Taiyuan 030031, China
    Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Taiyuan 030031, China)

  • Jiaoning Zhu

    (Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China
    Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province) of MOARA, Taiyuan 030031, China
    Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Taiyuan 030031, China)

  • Yun Tang

    (Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China
    Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province) of MOARA, Taiyuan 030031, China
    Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Taiyuan 030031, China)

  • Xiangyuan Shi

    (Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China
    Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province) of MOARA, Taiyuan 030031, China
    Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Taiyuan 030031, China)

  • Sumera Anwar

    (Department of Botany, Government College Women University Faisalabad, Faisalabad 38000, Pakistan)

  • Juanling Wang

    (Key Laboratory of Sustainable Dryland Agriculture (Co-Construction by Ministry and Province) of MOARA, Taiyuan 030031, China
    Shanxi Province Key Laboratory of Sustainable Dryland Agriculture, Taiyuan 030031, China)

  • Li Gao

    (College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China)

  • Jingxuan Zhang

    (College of Resources and Environment, Shanxi Agricultural University, Taiyuan 030031, China)

Abstract

High ammonium release from chicken manure poses a significant limitation to aerobic digestion, impeding microbial processes and inhibiting biogas production. In this study, we conducted anaerobic digestion of a mixture consisting of chicken manure and corn straw as the fermented raw material. The inoculum used was obtained from the residue of previously fermented chicken manure. To assess the inhibitory effect, we varied the ammonia levels within the range of 750–4250 mg/L by introducing ammonium chloride. The efficiency of aerobic digestion was monitored through the measurement of volatile fatty acids (VFA), chemical oxygen demand (COD), total inorganic carbon (TOC), and methane yield. Our results indicated that elevated levels of ammonia nitrogen had a suppressive impact on methane release, and this decrease followed a linear relationship with the increasing ammonia nitrogen load. Moreover, the addition of ammonia led to a slower release, with the maximum daily ammonia concentration observed at 15 days compared to the 6th day at lower ammonia levels. Furthermore, on the 40th day of aerobic digestion, the cumulative methane production at 4250 mg/L was inhibited by 41% compared to the 750 mg/L condition. The patterns of VFA, inorganic carbon, and COD reduction were consistent across all ammonia levels, with VFA and TOC levels being highest at the highest ammonia concentration and lowest at the lowest ammonia concentration. The accumulation of VFA resulted in a decrease in pH and a decline in methanogenic activity. Additionally, high ammonia levels altered the relative abundance of methanogens. Acetoclastic methanogens ( Methanosaeta ) exhibited a decrease in abundance, while hydrogenotrophic methanogens ( Methanosaeta , Methanoculleus ) and methylotrophic methanogens ( Candidatus Methanoplasma ) demonstrated an increase in abundance. Overall, our findings highlight the inhibitory effects of high ammonia concentrations on biogas production, providing insights into the changes in microbial composition and activity during anaerobic fermentation.

Suggested Citation

  • Yongping Li & Jiaoning Zhu & Yun Tang & Xiangyuan Shi & Sumera Anwar & Juanling Wang & Li Gao & Jingxuan Zhang, 2023. "Impact of Varying Mass Concentrations of Ammonia Nitrogen on Biogas Production and System Stability of Anaerobic Fermentation," Agriculture, MDPI, vol. 13(8), pages 1-14, August.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1645-:d:1221736
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/8/1645/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/8/1645/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veronica Arthurson, 2009. "Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback," Energies, MDPI, vol. 2(2), pages 1-17, April.
    2. Calbry-Muzyka, Adelaide & Madi, Hossein & Rüsch-Pfund, Florian & Gandiglio, Marta & Biollaz, Serge, 2022. "Biogas composition from agricultural sources and organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 181(C), pages 1000-1007.
    3. Jay N. Meegoda & Brian Li & Kush Patel & Lily B. Wang, 2018. "A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    4. Van Hong Thi Pham & Jeongyoon Ahn & Jaisoo Kim & Sangbeom Lee & Ingyu Lee & Sungchul Kim & Soonwoong Chang & Woojin Chung, 2021. "Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis G. Cortés & J. Barbancho & D. F. Larios & J. D. Marin-Batista & A. F. Mohedano & C. Portilla & M. A. de la Rubia, 2022. "Full-Scale Digesters: Model Predictive Control with Online Kinetic Parameter Identification Strategy," Energies, MDPI, vol. 15(22), pages 1-23, November.
    2. Xiaolong Lin & Zongmu Yao & Xinguang Wang & Shangqi Xu & Chunjie Tian & Lei Tian, 2021. "Water-Covered Depth with the Freeze–Thaw Cycle Influences Fungal Communities on Rice Straw Decomposition," Agriculture, MDPI, vol. 11(11), pages 1-16, November.
    3. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    4. Veronica Arthurson & Lotta Jäderlund, 2011. "Utilization of Natural Farm Resources for Promoting High Energy Efficiency in Low-Input Organic Farming," Energies, MDPI, vol. 4(5), pages 1-14, May.
    5. Shuhei Matsuda & Takahiro Yamato & Yoshiyuki Mochizuki & Yoshinori Sekiguchi & Takashi Ohtsuki, 2020. "Batch-Mode Analysis of Thermophilic Methanogenic Microbial Community Changes in the Overacidification Stage in Beverage Waste Treatment," IJERPH, MDPI, vol. 17(20), pages 1-13, October.
    6. Gandiglio, Marta, 2022. "Design and operation of an industrial size adsorption-based cleaning system for biogas use in fuel cells," Energy, Elsevier, vol. 259(C).
    7. Arthur Chevalier & Philippe Evon & Florian Monlau & Virginie Vandenbossche & Cecilia Sambusiti, 2023. "Twin-Screw Extrusion Mechanical Pretreatment for Enhancing Biomethane Production from Agro-Industrial, Agricultural and Catch Crop Biomasses," Waste, MDPI, vol. 1(2), pages 1-18, May.
    8. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    9. Sukriti Singh & Nehil Shreyash & Venkateswara R. Kode & Xianghong Qian & S. Ranil Wickramasinghe, 2024. "Review of Separation and Purification of Biobased Derivatives Produced from Food Waste for Industrial Use," Circular Economy and Sustainability, Springer, vol. 4(2), pages 905-928, June.
    10. Magdalena Zdeb & Marta Bis & Artur Przywara, 2023. "Multi-Criteria Analysis of the Influence of Lignocellulosic Biomass Pretreatment Techniques on Methane Production," Energies, MDPI, vol. 16(1), pages 1-14, January.
    11. Joisleen Ramírez & Euclides Deago & Arthur Mc Carty James Rivas, 2024. "Effect of Biochar on Anaerobic Co-Digestion of Untreated Sewage Sludge with Municipal Organic Waste under Mesophilic Conditions," Energies, MDPI, vol. 17(10), pages 1-18, May.
    12. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    13. Orlando Corigliano & Marco Iannuzzi & Crescenzo Pellegrino & Francesco D’Amico & Leonardo Pagnotta & Petronilla Fragiacomo, 2023. "Enhancing Energy Processes and Facilities Redesign in an Anaerobic Digestion Plant for Biomethane Production," Energies, MDPI, vol. 16(15), pages 1-29, August.
    14. Vannucci, Julián A. & Gatti, Martín N. & Cardaci, Nicolas & Nichio, Nora N., 2022. "Economic feasibility of a solketal production process from glycerol at small industrial scale," Renewable Energy, Elsevier, vol. 190(C), pages 540-547.
    15. Florentios Economou & Irene Voukkali & Iliana Papamichael & Valentina Phinikettou & Pantelitsa Loizia & Vincenzo Naddeo & Paolo Sospiro & Marco Ciro Liscio & Christos Zoumides & Diana Mihaela Țîrcă & , 2024. "Turning Food Loss and Food Waste into Watts: A Review of Food Waste as an Energy Source," Energies, MDPI, vol. 17(13), pages 1-30, June.
    16. Wu, Benteng & Lin, Richen & O'Shea, Richard & Deng, Chen & Rajendran, Karthik & Murphy, Jerry D., 2021. "Production of advanced fuels through integration of biological, thermo-chemical and power to gas technologies in a circular cascading bio-based system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Sławomir Łazarski & Andrzej Butarewicz & Marcin Cichosz & Urszula Kiełkowska, 2023. "Study on the Effect of Dedicated Microelement Mixture (DMM) on the Kick-Off Phase of the Digester and Stabilization of the Methane Fermentation Process," Energies, MDPI, vol. 16(9), pages 1-21, April.
    18. Wenzhi Xu & Yongqun Zhu & Xie Wang & Lei Ji & Hong Wang & Li Yao & Chaowen Lin, 2021. "The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    19. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    20. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:8:p:1645-:d:1221736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.