IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v126y2014icp90-106.html
   My bibliography  Save this article

Data and analytics to inform energy retrofit of high performance buildings

Author

Listed:
  • Hong, Tianzhen
  • Yang, Le
  • Hill, David
  • Feng, Wei

Abstract

Buildings consume more than one-third of the world’s primary energy. Reducing energy use in buildings with energy efficient technologies is feasible and also driven by energy policies such as energy benchmarking, disclosure, rating, and labeling in both the developed and developing countries. Current energy retrofits focus on the existing building stocks, especially older buildings, but the growing number of new high performance buildings built around the world raises a question that how these buildings perform and whether there are retrofit opportunities to further reduce their energy use. This is a new and unique problem for the building industry. Traditional energy audit or analysis methods are inadequate to look deep into the energy use of the high performance buildings. This study aims to tackle this problem with a new holistic approach powered by building performance data and analytics. First, three types of measured data are introduced, including the time series energy use, building systems operating conditions, and indoor and outdoor environmental parameters. An energy data model based on the ISO Standard 12655 is used to represent the energy use in buildings in a three-level hierarchy. Secondly, a suite of analytics were proposed to analyze energy use and to identify retrofit measures for high performance buildings. The data-driven analytics are based on monitored data at short time intervals, and cover three levels of analysis – energy profiling, benchmarking and diagnostics. Thirdly, the analytics were applied to a high performance building in California to analyze its energy use and identify retrofit opportunities, including: (1) analyzing patterns of major energy end-use categories at various time scales, (2) benchmarking the whole building total energy use as well as major end-uses against its peers, (3) benchmarking the power usage effectiveness for the data center, which is the largest electricity consumer in this building, and (4) diagnosing HVAC equipment using detailed time-series operating data. Finally, a few energy efficiency measures were identified for retrofit, and their energy savings were estimated to be 20% of the whole-building electricity consumption. Based on the analyses, the building manager took a few steps to improve the operation of fans, chillers, and data centers, which will lead to actual energy savings. This study demonstrated that there are energy retrofit opportunities for high performance buildings and detailed measured building performance data and analytics can help identify and estimate energy savings and to inform the decision making during the retrofit process. Challenges of data collection and analytics were also discussed to shape best practice of retrofitting high performance buildings.

Suggested Citation

  • Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
  • Handle: RePEc:eee:appene:v:126:y:2014:i:c:p:90-106
    DOI: 10.1016/j.apenergy.2014.03.052
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.03.052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
    2. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    3. Costa, Andrea & Keane, Marcus M. & Torrens, J. Ignacio & Corry, Edward, 2013. "Building operation and energy performance: Monitoring, analysis and optimisation toolkit," Applied Energy, Elsevier, vol. 101(C), pages 310-316.
    4. Arumägi, Endrik & Kalamees, Targo, 2014. "Analysis of energy economic renovation for historic wooden apartment buildings in cold climates," Applied Energy, Elsevier, vol. 115(C), pages 540-548.
    5. Yu, F.W. & Chan, K.T., 2012. "Improved energy management of chiller systems by multivariate and data envelopment analyses," Applied Energy, Elsevier, vol. 92(C), pages 168-174.
    6. ., 2013. "Better markets, better government, better society," Chapters, in: Industrial Policy in America, chapter 2, pages 31-42, Edward Elgar Publishing.
    7. Wang, Liping & Greenberg, Steve & Fiegel, John & Rubalcava, Alma & Earni, Shankar & Pang, Xiufeng & Yin, Rongxin & Woodworth, Spencer & Hernandez-Maldonado, Jorge, 2013. "Monitoring-based HVAC commissioning of an existing office building for energy efficiency," Applied Energy, Elsevier, vol. 102(C), pages 1382-1390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    2. Wang, Huilong & Xu, Peng & Lu, Xing & Yuan, Dengkuo, 2016. "Methodology of comprehensive building energy performance diagnosis for large commercial buildings at multiple levels," Applied Energy, Elsevier, vol. 169(C), pages 14-27.
    3. Balvís, Eduardo & Sampedro, Óscar & Zaragoza, Sonia & Paredes, Angel & Michinel, Humberto, 2016. "A simple model for automatic analysis and diagnosis of environmental thermal comfort in energy efficient buildings," Applied Energy, Elsevier, vol. 177(C), pages 60-70.
    4. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    5. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    6. Deng, Jiewen & Wei, Qingpeng & Qian, Yangyang & Zhang, Hui, 2018. "Does magnetic bearing variable-speed centrifugal chiller perform truly energy efficient in buildings: Field-test and simulation results," Applied Energy, Elsevier, vol. 229(C), pages 998-1009.
    7. Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
    8. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    9. Lee, Wen-Shing & Kung, Chung-Kuan, 2011. "Using climate classification to evaluate building energy performance," Energy, Elsevier, vol. 36(3), pages 1797-1801.
    10. Leccese, Francesco & Salvadori, Giacomo & Asdrubali, Francesco & Gori, Paola, 2018. "Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls," Applied Energy, Elsevier, vol. 225(C), pages 1078-1089.
    11. Zhao, Jing & Yang, Zilan & Shi, Linyu & Liu, Dehan & Li, Haonan & Mi, Yumiao & Wang, Hongbin & Feng, Meili & Hutagaol, Timothy Joseph, 2024. "Photovoltaic capacity dynamic tracking model predictive control strategy of air-conditioning systems with consideration of flexible loads," Applied Energy, Elsevier, vol. 356(C).
    12. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    13. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
    14. Chandan Swaroop Meena & Binju P Raj & Lohit Saini & Nehul Agarwal & Aritra Ghosh, 2021. "Performance Optimization of Solar-Assisted Heat Pump System for Water Heating Applications," Energies, MDPI, vol. 14(12), pages 1-17, June.
    15. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    16. Abou-Ziyan, Hosny Z. & Alajmi, Ali F., 2014. "Effect of load-sharing operation strategy on the aggregate performance of existed multiple-chiller systems," Applied Energy, Elsevier, vol. 135(C), pages 329-338.
    17. Pikas, Ergo & Thalfeldt, Martin & Kurnitski, Jarek & Liias, Roode, 2015. "Extra cost analyses of two apartment buildings for achieving nearly zero and low energy buildings," Energy, Elsevier, vol. 84(C), pages 623-633.
    18. Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    20. Chao Huan & Sha Zhang & Xiaoxuan Zhao & Shengteng Li & Bo Zhang & Yujiao Zhao & Pengfei Tao, 2021. "Thermal Performance of Cemented Paste Backfill Body Considering Its Slurry Sedimentary Characteristics in Underground Backfill Stopes," Energies, MDPI, vol. 14(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:126:y:2014:i:c:p:90-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.