IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v38y2012i1p16-30.html
   My bibliography  Save this article

Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation

Author

Listed:
  • Chowdhury, Souma
  • Zhang, Jie
  • Messac, Achille
  • Castillo, Luciano

Abstract

A new methodology, the Unrestricted Wind Farm Layout Optimization (UWFLO), that addresses critical aspects of optimal wind farm planning is presented in this paper. This methodology simultaneously determines the optimum farm layout and the appropriate selection of turbines (in terms of their rotor diameters) that maximizes the net power generation. The farm layout model obviates traditional restrictions imposed on the location of turbines. A standard analytical wake model has been used to account for the velocity deficits in the wakes created by individual turbines. The wind farm power generation model is validated against data from a wind tunnel experiment on a scaled down wind farm. Reasonable agreement between the model and experimental results is obtained. The complex nonlinear optimization problem presented by the wind farm model is effectively solved using constrained Particle Swarm Optimization (PSO). It is found that an optimal combination of wind turbines with differing rotor diameters can appreciably improve the farm efficiency. A preliminary wind farm cost analysis is performed to express the cost in terms of the turbine rotor diameters and the number of turbines in the farm. Subsequent exploration of the influences of (i) the number of turbines, and (ii) the farm land size, on the cost per Kilowatt of power produced, yields important observations.

Suggested Citation

  • Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2012. "Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation," Renewable Energy, Elsevier, vol. 38(1), pages 16-30.
  • Handle: RePEc:eee:renene:v:38:y:2012:i:1:p:16-30
    DOI: 10.1016/j.renene.2011.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111003260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    2. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    3. Kusiak, Andrew & Zheng, Haiyang, 2010. "Optimization of wind turbine energy and power factor with an evolutionary computation algorithm," Energy, Elsevier, vol. 35(3), pages 1324-1332.
    4. Kiranoudis, C. T. & Voros, N. G. & Maroulis, Z. B., 2001. "Short-cut design of wind farms," Energy Policy, Elsevier, vol. 29(7), pages 567-578, June.
    5. Kaldellis, J. K. & Gavras, Th. J., 2000. "The economic viability of commercial wind plants in Greece A complete sensitivity analysis," Energy Policy, Elsevier, vol. 28(8), pages 509-517, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chowdhury, Souma & Zhang, Jie & Messac, Achille & Castillo, Luciano, 2013. "Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions," Renewable Energy, Elsevier, vol. 52(C), pages 273-282.
    2. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Cao, Jiu Fa & Zhu, Wei Jun & Shen, Wen Zhong & Sørensen, Jens Nørkær & Sun, Zhen Ye, 2020. "Optimizing wind energy conversion efficiency with respect to noise: A study on multi-criteria wind farm layout design," Renewable Energy, Elsevier, vol. 159(C), pages 468-485.
    4. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    5. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    6. Tao, Siyu & Xu, Qingshan & Feijóo, Andrés & Zheng, Gang & Zhou, Jiemin, 2020. "Nonuniform wind farm layout optimization: A state-of-the-art review," Energy, Elsevier, vol. 209(C).
    7. Dinçer, A.E. & Demir, A. & Yılmaz, K., 2024. "Multi-objective turbine allocation on a wind farm site," Applied Energy, Elsevier, vol. 355(C).
    8. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    9. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    10. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    11. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    12. Dalibor Petković & Siti Hafizah Ab Hamid & Žarko Ćojbašić & Nenad T. Pavlović, 2014. "RETRACTED ARTICLE: Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 463-475, November.
    13. Mittal, Prateek & Kulkarni, Kedar & Mitra, Kishalay, 2016. "A novel hybrid optimization methodology to optimize the total number and placement of wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 133-147.
    14. Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
    15. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations," Renewable Energy, Elsevier, vol. 75(C), pages 50-67.
    16. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    17. Muche, Thomas & Pohl, Ralf & Höge, Christin, 2016. "Economically optimal configuration of onshore horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 469-480.
    18. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    19. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    20. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:38:y:2012:i:1:p:16-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.