IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp223-229.html
   My bibliography  Save this article

A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy

Author

Listed:
  • Zhang, Yanwei
  • Xu, Chenyu
  • Chen, Jingche
  • Zhang, Xuhan
  • Wang, Zhihua
  • Zhou, Junhu
  • Cen, Kefa

Abstract

To dissociate carbon dioxide (CO2) using solar energy, a novel photo-thermochemical cycle combining photochemistry with thermochemistry is proposed in this paper. After illuminating titanium dioxide (TiO2) in a helium (He) atmosphere by ultraviolet (UV) irradiation, CO2 was input and converted to carbon monoxide (CO) under heating in an enclosed cavity. To determine the optimal heating temperature, sets of four consecutive cycles were performed at temperatures from 573K to 873K. The preferred temperature was found to be 773K. CO was stably produced in five successive cycles at 773K, demonstrating the method’s possibility. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were employed to assess the crystal structure and morphology. X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) analyses were also conducted to investigate the charge transfer and reaction mechanisms on the TiO2 surface. Finally, a charge transfer mechanism is tentatively proposed.

Suggested Citation

  • Zhang, Yanwei & Xu, Chenyu & Chen, Jingche & Zhang, Xuhan & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy," Applied Energy, Elsevier, vol. 156(C), pages 223-229.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:223-229
    DOI: 10.1016/j.apenergy.2015.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    2. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    3. Grob, Gustav R., 2003. "Importance of ISO and IEC international energy standards and a new total approach to energy statistics and forecasting," Applied Energy, Elsevier, vol. 76(1-3), pages 39-54, September.
    4. Zhang, Yanwei & Zhu, Qiaoqiao & Lin, Xiangdong & Xu, Zemin & Liu, Jianbo & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2013. "A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources," Applied Energy, Elsevier, vol. 108(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mostafaeipour, Ali & Qolipour, Mojtaba & Mohammadi, Kasra, 2016. "Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 60-74.
    2. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    3. Zhang, Yidian & Guo, Shaopeng & Tian, Zhenyu & Zhao, Yawen & Hao, Yong, 2019. "Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts," Applied Energy, Elsevier, vol. 254(C).
    4. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    5. Zhu, Tao & Li, Qiang & Xuan, Yimin & Liu, Dong & Hong, Hui, 2019. "Performance investigation of a hybrid photovoltaics and mid-temperature methanol thermochemistry system," Applied Energy, Elsevier, vol. 256(C).
    6. Narasimhan, Vinayak & Jiang, Dongyue & Park, Sung-Yong, 2016. "Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection," Applied Energy, Elsevier, vol. 162(C), pages 450-459.
    7. Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
    8. Liu, Xiufeng & Hong, Hui & Jin, Hongguang, 2017. "Mid-temperature solar fuel process combining dual thermochemical reactions for effectively utilizing wider solar irradiance," Applied Energy, Elsevier, vol. 185(P2), pages 1031-1039.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanwei & Yang, Hui & Zhou, Junhu & Wang, Zhihua & Liu, Jianzhong & Cen, Kefa, 2014. "Detailed kinetic modeling of homogeneous H2SO4 decomposition in the sulfur–iodine cycle for hydrogen production," Applied Energy, Elsevier, vol. 130(C), pages 396-402.
    2. Zhao, Chuanwen & Guo, Yafei & Li, Changhai & Lu, Shouxiang, 2014. "Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents," Applied Energy, Elsevier, vol. 124(C), pages 241-247.
    3. Mohammed A. Al-Ghamdi & Khalid S. Al-Gahtani, 2022. "Integrated Value Engineering and Life Cycle Cost Modeling for HVAC System Selection," Sustainability, MDPI, vol. 14(4), pages 1-30, February.
    4. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    5. Cheng, Chin-hung & Li, Kangkang & Yu, Hai & Jiang, Kaiqi & Chen, Jian & Feron, Paul, 2018. "Amine-based post-combustion CO2 capture mediated by metal ions: Advancement of CO2 desorption using copper ions," Applied Energy, Elsevier, vol. 211(C), pages 1030-1038.
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
    8. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    9. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    10. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    11. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    12. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    13. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    14. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    15. Wei-Jen Huang & Kai-Jung Kao & Li-Lian Liu & Chi-Wen Liao & Yin-Lung Han, 2018. "An Assessment of Direct Dissolved Inorganic Carbon Injection to the Coastal Region: A Model Result," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    16. Zhang, Xiaowen & Zhang, Xin & Liu, Helei & Li, Wensheng & Xiao, Min & Gao, Hongxia & Liang, Zhiwu, 2017. "Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts," Applied Energy, Elsevier, vol. 202(C), pages 673-684.
    17. Leimbrink, Mathias & Sandkämper, Stephanie & Wardhaugh, Leigh & Maher, Dan & Green, Phil & Puxty, Graeme & Conway, Will & Bennett, Robert & Botma, Henk & Feron, Paul & Górak, Andrzej & Skiborowski, Mi, 2017. "Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture," Applied Energy, Elsevier, vol. 208(C), pages 263-276.
    18. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    19. Itskos, Grigorios & Grammelis, Panagiotis & Scala, Fabrizio & Pawlak-Kruczek, Halina & Coppola, Antonio & Salatino, Piero & Kakaras, Emmanuel, 2013. "A comparative characterization study of Ca-looping natural sorbents," Applied Energy, Elsevier, vol. 108(C), pages 373-382.
    20. Sitong Liu & Huanmei Yuan & Dengti Hu & Tonghe Li & Hao Bai, 2024. "Effect of Dropping Speed of Reducing Agent on the Preparation of LA/Ag Phase-Change Nanocapsules," Energies, MDPI, vol. 17(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:223-229. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.