IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v108y2013icp373-382.html
   My bibliography  Save this article

A comparative characterization study of Ca-looping natural sorbents

Author

Listed:
  • Itskos, Grigorios
  • Grammelis, Panagiotis
  • Scala, Fabrizio
  • Pawlak-Kruczek, Halina
  • Coppola, Antonio
  • Salatino, Piero
  • Kakaras, Emmanuel

Abstract

In this study, six high-Ca limestones and one dolomite from Germany, Greece, Italy, and Poland were tested for their CO2-uptake capacity during carbonation–calcination experiments in a TGA apparatus, as well as in a lab-scale atmospheric bubbling FB reactor. The calcium looping experiments were carried out both in the presence and absence of sulfur in gas phase, to study its likely inhibitory effect on the penetration of CaO particles by CO2. The mineralogy and microstructure of fresh, sulfated/carbonated, and non-sulfated/carbonated sorbents have been comparatively evaluated by means of X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy–Scanning Electron Microscopy (EDS–SEM), respectively. Their specific surface area and pore size distribution have been determined by means of N2-porosimetry. All samples were examined after five cycles of carbonation–calcination. In most sulfated samples, a shell of anhydrite (CaSO4) has been identified peripherally to the CaO particles, preventing part of their core from further carbonating. The macro-porosity (%) of sulfated samples was increased, compared to the non-sulfated ones, suggesting less sintering in the former, a fact also supported by the BET area measurements. On the other hand, micro-porosity showed no clear tendency with sulfation. The loss in microporosity, observed in particular cases of sulfated samples, was attributed to a drop in the associated conversion during carbonation. Overall, this work contains an integrated, comparative characterization study of the tested sorbents, accompanied by suggestions on their utilization in Ca-looping processes.

Suggested Citation

  • Itskos, Grigorios & Grammelis, Panagiotis & Scala, Fabrizio & Pawlak-Kruczek, Halina & Coppola, Antonio & Salatino, Piero & Kakaras, Emmanuel, 2013. "A comparative characterization study of Ca-looping natural sorbents," Applied Energy, Elsevier, vol. 108(C), pages 373-382.
  • Handle: RePEc:eee:appene:v:108:y:2013:i:c:p:373-382
    DOI: 10.1016/j.apenergy.2013.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913001955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2012. "The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder," Applied Energy, Elsevier, vol. 92(C), pages 415-420.
    2. Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture," Applied Energy, Elsevier, vol. 101(C), pages 317-322.
    3. Chen, Shiyi & Xiang, Wenguo & Wang, Dong & Xue, Zhipeng, 2012. "Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture," Applied Energy, Elsevier, vol. 95(C), pages 285-294.
    4. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    5. Wang, Jinsheng & Manovic, Vasilije & Wu, Yinghai & Anthony, Edward J., 2010. "A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes," Applied Energy, Elsevier, vol. 87(4), pages 1453-1458, April.
    6. Chen, Huichao & Zhao, Changsui & Yang, Yanmei & Zhang, Pingping, 2012. "CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation," Applied Energy, Elsevier, vol. 91(1), pages 334-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
    2. Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
    3. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A., 2014. "Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2," Applied Energy, Elsevier, vol. 126(C), pages 161-171.
    4. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    5. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    6. Kavosh, Masoud & Patchigolla, Kumar & Anthony, Edward J. & Oakey, John E., 2014. "Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere," Applied Energy, Elsevier, vol. 131(C), pages 499-507.
    7. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    8. Witoon, Thongthai & Mungcharoen, Thumrongrut & Limtrakul, Jumras, 2014. "Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method," Applied Energy, Elsevier, vol. 118(C), pages 32-40.
    9. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    2. Li, Bingyun & Duan, Yuhua & Luebke, David & Morreale, Bryan, 2013. "Advances in CO2 capture technology: A patent review," Applied Energy, Elsevier, vol. 102(C), pages 1439-1447.
    3. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    4. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
    5. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    6. Valverde, J.M. & Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A. & Quintanilla, M.A.S. & Perez-Vaquero, J., 2014. "Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions," Applied Energy, Elsevier, vol. 125(C), pages 264-275.
    7. Kavosh, Masoud & Patchigolla, Kumar & Anthony, Edward J. & Oakey, John E., 2014. "Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere," Applied Energy, Elsevier, vol. 131(C), pages 499-507.
    8. Valverde, J.M. & Raganati, F. & Quintanilla, M.A.S. & Ebri, J.M.P. & Ammendola, P. & Chirone, R., 2013. "Enhancement of CO2 capture at Ca-looping conditions by high-intensity acoustic fields," Applied Energy, Elsevier, vol. 111(C), pages 538-549.
    9. Sun, Zhao & Chen, Shiyi & Ma, Shiwei & Xiang, Wenguo & Song, Quanbin, 2016. "Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction," Applied Energy, Elsevier, vol. 169(C), pages 642-651.
    10. Valverde, Jose M. & Sanchez-Jimenez, Pedro E. & Perejon, Antonio & Perez-Maqueda, Luis A., 2013. "Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions," Applied Energy, Elsevier, vol. 108(C), pages 108-120.
    11. Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Hydrodynamical model and experimental results of a calcium looping cycle for CO2 capture," Applied Energy, Elsevier, vol. 101(C), pages 317-322.
    12. Esmaili, Ehsan & Mostafavi, Ehsan & Mahinpey, Nader, 2016. "Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture," Applied Energy, Elsevier, vol. 169(C), pages 341-352.
    13. Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Romeo, Luis M., 2013. "Design and analysis of heat exchanger networks for integrated Ca-looping systems," Applied Energy, Elsevier, vol. 111(C), pages 690-700.
    14. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    15. Jiang, Bingbing & Wang, Xianfeng & Gray, McMahan L. & Duan, Yuhua & Luebke, David & Li, Bingyun, 2013. "Development of amino acid and amino acid-complex based solid sorbents for CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 112-118.
    16. Xie, Xin & Li, Yingjie & Wang, Wenjing & Shi, Lei, 2014. "HCl removal using cycled carbide slag from calcium looping cycles," Applied Energy, Elsevier, vol. 135(C), pages 391-401.
    17. Sanchez-Jimenez, P.E. & Perez-Maqueda, L.A. & Valverde, J.M., 2014. "Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions," Applied Energy, Elsevier, vol. 118(C), pages 92-99.
    18. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    19. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    20. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:108:y:2013:i:c:p:373-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.