IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp298-308.html
   My bibliography  Save this article

Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel

Author

Listed:
  • Kang, Yong-Kwon
  • Joung, Jaewon
  • Kim, Minseong
  • Jeong, Jae-Weon

Abstract

As the importance of energy saving continues to increase owing to climate change, various Internet of Things sensors, related to building temperatures, humidity, and energy usage, are being employed in buildings, such as in building energy management systems. Aiming to satisfy the rapidly increasing electric energy demands of buildings, studies have combined various building-integrated photovoltaic (BIPV) and thermoelectric generators (TEGs) to recover sunlight and heat wasted from building envelopes. However, in most previous studies, active methods for heat rejection were applied to increase the temperature difference between both ends of the TEG and cooling of the solar panel. The actual constructability problems, such as leakage problems, were insufficiently addressed. Therefore, this study proposed a BIPV-TEG system with increased constructability and heat dissipation efficiency using a heat pipe and microencapsulated phase change material (mPCM). In addition, this study analyzed the thermal behaviors and improvements in power generation efficiency through field tests by manufacturing a prototype. The results of the outdoor experiment indicated that the BIPV-TEG-PCM prototype improved power generation efficiency by approximately 2% in the intermediate season and 2.5% in the summer relative to the efficiency of a general PV panel. Moreover, using a single TEG, approximately 3.06 Wh of the heat wasted in the building envelope can be recovered as a form of electricity annually.

Suggested Citation

  • Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:298-308
    DOI: 10.1016/j.renene.2023.03.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byon, Yoo-Suk & Jeong, Jae-Weon, 2020. "Phase change material-integrated thermoelectric energy harvesting block as an independent power source for sensors in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    3. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    4. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    5. Brenda Vale & Robert Vale, 2005. "The all-electric house: past and future," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 8(3), pages 173-188.
    6. Yin, Ershuai & Li, Qiang & Li, Dianhong & Xuan, Yimin, 2019. "Experimental investigation on effects of thermal resistances on a photovoltaic-thermoelectric system integrated with phase change materials," Energy, Elsevier, vol. 169(C), pages 172-185.
    7. Hansol Lim & Seong-Yong Cheon & Jae-Weon Jeong, 2018. "Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit," Energies, MDPI, vol. 11(3), pages 1-14, March.
    8. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    10. Sark, W.G.J.H.M. van, 2011. "Feasibility of photovoltaic - Thermoelectric hybrid modules," Applied Energy, Elsevier, vol. 88(8), pages 2785-2790, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    2. Wang, Xueli & Zhang, Pengju & Du, Yan & Liu, Lang & Fang, Jiabin & Ji, Changfa & Wang, Mei & Zhang, Bo & Huan, Chao, 2024. "Numerical investigation on the heat storage/heat release performance enhancement of phase change cemented paste backfill body with using casing-type heat pipe heat exchangers," Renewable Energy, Elsevier, vol. 225(C).
    3. Tarek Ibrahim & Mohamad Abou Akrouch & Farouk Hachem & Mohamad Ramadan & Haitham S. Ramadan & Mahmoud Khaled, 2024. "Cooling Techniques for Enhanced Efficiency of Photovoltaic Panels—Comparative Analysis with Environmental and Economic Insights," Energies, MDPI, vol. 17(3), pages 1-32, February.
    4. Sánchez-Balseca, Joseph & Pineiros, José Luis & Pérez-Foguet, Agustí, 2023. "Influence of environmental factors on the power produced by photovoltaic panels artificially weathered," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Kai Jiao & Lin Lu & Liang Zhao & Gang Wang, 2024. "Towards Passive Building Thermal Regulation: A State-of-the-Art Review on Recent Progress of PCM-Integrated Building Envelopes," Sustainability, MDPI, vol. 16(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Kwon Kang & Jaewon Joung & Minseong Kim & Hyun-Hwa Lee & Jae-Weon Jeong, 2022. "Numerical Analysis of a TEG and mPCM Enhancement System for BIPVs Using CFD," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    2. Ko, Jinyoung & Jeong, Jae-Weon, 2021. "Annual performance evaluation of thermoelectric generator-assisted building-integrated photovoltaic system with phase change material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    4. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.
    5. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    6. Ko, Jinyoung & Cheon, Seong-Yong & Kang, Yong-Kwon & Jeong, Jae-Weon, 2022. "Design of a thermoelectric generator-assisted energy harvesting block considering melting temperature of phase change materials," Renewable Energy, Elsevier, vol. 193(C), pages 89-112.
    7. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    8. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    9. Rejeb, Oussama & Shittu, Samson & Ghenai, Chaouki & Li, Guiqiang & Zhao, Xudong & Bettayeb, Maamar, 2020. "Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system," Renewable Energy, Elsevier, vol. 152(C), pages 1342-1353.
    10. Wen, Xin & Ji, Jie & Li, Zhaomeng, 2023. "Evaluation of the phase change material in regulating all-day electrical performance in the PV-MCHP-TE system in winter," Energy, Elsevier, vol. 263(PC).
    11. Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
    12. Gao, Yuanzhi & Wang, Changling & Wu, Dongxu & Dai, Zhaofeng & Chen, Bo & Zhang, Xiaosong, 2022. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink," Renewable Energy, Elsevier, vol. 192(C), pages 716-730.
    13. Aridi, Rima & Faraj, Jalal & Ali, Samer & Lemenand, Thierry & khaled, Mahmoud, 2022. "A comprehensive review on hybrid heat recovery systems: Classifications, applications, pros and cons, and new systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    15. Mohammadnia, Ali & Ziapour, Behrooz M. & Sedaghati, Farzad & Rosendahl, Lasse & Rezania, Alireza, 2021. "Fan operating condition effect on performance of self- cooling thermoelectric generator system," Energy, Elsevier, vol. 224(C).
    16. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    17. Lv, Song & Yang, Jiahao & Ren, Juwen & Zhang, Bolong & Lai, Yin & Chang, Zhihao, 2023. "Research and numerical analysis on performance optimization of photovoltaic-thermoelectric system incorporated with phase change materials," Energy, Elsevier, vol. 263(PC).
    18. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    19. Khoshnazm, Mohammad Javad & Marzban, Ali & Azimi, Neda, 2023. "Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement," Energy, Elsevier, vol. 267(C).
    20. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:298-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.