IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v323y2022ics0306261922009278.html
   My bibliography  Save this article

Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction

Author

Listed:
  • Li, Guiqiang
  • Li, Jinpeng
  • Yang, Ruoxi
  • Chen, Xiangjie

Abstract

Hydrogen production by solar energy is very promising. In this paper, a hybrid hydrogen production method by combining photothermal cooperative reaction with PV/T power generation electrolysis water is proposed. Although the photothermal cooperative reaction and the PV/T power generation electrolysis water can also use the full spectrum of solar energy for hydrogen generation, and the hydrogen generation efficiencies of the two are 1.223% and 17.339% respectively, but the efficiency of the hybrid hydrogen production method proposed in this paper under the same conditions is 18.49%. In contrast, the hydrogen production method proposed in this paper is more efficient. By establishing the PV/T model, the electrolytic water model and the photothermal cooperative reaction model, the hybrid model hydrogen production efficiency at different PV cell temperatures, at different separation wavelengths λ3 and at different PV cell materials were analyzed and discussed in this paper. In the hybrid model, when reducing the temperature of the PV cell, the increment of the PV power generation is somewhat larger than the reduction of the electrolytic water hydrogen production efficiency, thus the temperature of PV cell should be reduced as much as possible in order to improve the efficiency of the hybrid model. When increasing the separation wavelength λ3, the increment of electrolytic water hydrogen production rate is higher than the decrement of photothermal cooperative reaction hydrogen production rate, thus in order to improve the hydrogen production efficiency of the hybrid model, the separation wavelength λ3 should be increased within the desirable range. When the PV cell material is GaAs, hybrid model hydrogen production efficiency is the highest, which can reach 20.52%. These conclusions could provide thoughts for the subsequent design of more efficient full-spectrum solar hydrogen production methods.

Suggested Citation

  • Li, Guiqiang & Li, Jinpeng & Yang, Ruoxi & Chen, Xiangjie, 2022. "Performance analysis of a hybrid hydrogen production system in the integrations of PV/T power generation electrolytic water and photothermal cooperative reaction," Applied Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009278
    DOI: 10.1016/j.apenergy.2022.119625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922009278
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rejeb, Oussama & Dhaou, Houcine & Jemni, Abdelmajid, 2015. "A numerical investigation of a photovoltaic thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 77(C), pages 43-50.
    2. Rosen, Marc A., 2010. "Advances in hydrogen production by thermochemical water decomposition: A review," Energy, Elsevier, vol. 35(2), pages 1068-1076.
    3. Zhang, Yanwei & Xu, Chenyu & Chen, Jingche & Zhang, Xuhan & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "A novel photo-thermochemical cycle for the dissociation of CO2 using solar energy," Applied Energy, Elsevier, vol. 156(C), pages 223-229.
    4. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    5. Lakhera, Sandeep Kumar & Rajan, Aswathy & T.P., Rugma & Bernaurdshaw, Neppolian, 2021. "A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Gang, Pei & Huide, Fu & Huijuan, Zhu & Jie, Ji, 2012. "Performance study and parametric analysis of a novel heat pipe PV/T system," Energy, Elsevier, vol. 37(1), pages 384-395.
    7. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    8. Han, Zhonghe & Liu, Kaixin & Li, Guiqiang & Zhao, Xudong & Shittu, Samson, 2021. "Electrical and thermal performance comparison between PVT-ST and PV-ST systems," Energy, Elsevier, vol. 237(C).
    9. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    10. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    11. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    12. Zhou, Jinzhi & Ma, Xiaoli & Zhao, Xudong & Yuan, Yanping & Yu, Min & Li, Jing, 2020. "Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system," Renewable Energy, Elsevier, vol. 145(C), pages 1992-2004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    2. Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
    3. Jorge Sousa & Inês Azevedo & Cristina Camus & Luís Mendes & Carla Viveiros & Filipe Barata, 2024. "Decarbonizing Hard-to-Abate Sectors with Renewable Hydrogen: A Real Case Application to the Ceramics Industry," Energies, MDPI, vol. 17(15), pages 1-15, July.
    4. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    5. Mohamed Benghanem & Adel Mellit & Hamad Almohamadi & Sofiane Haddad & Nedjwa Chettibi & Abdulaziz M. Alanazi & Drigos Dasalla & Ahmed Alzahrani, 2023. "Hydrogen Production Methods Based on Solar and Wind Energy: A Review," Energies, MDPI, vol. 16(2), pages 1-31, January.
    6. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2023. "Performance assessment of the hybrid PV-MCHP-TE system integrated with PCM in all-day operation: A preliminary numerical investigation," Energy, Elsevier, vol. 278(PA).
    7. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    8. Lilia Tightiz & Saeedeh Mansouri & Farhad Zishan & Joon Yoo & Nima Shafaghatian, 2022. "Maximum Power Point Tracking for Photovoltaic Systems Operating under Partially Shaded Conditions Using SALP Swarm Algorithm," Energies, MDPI, vol. 15(21), pages 1-17, November.
    9. Joo, Chonghyo & Lee, Jaewon & Kim, Yurim & Cho, Hyungtae & Gu, Boram & Kim, Junghwan, 2024. "A novel on-site SMR process integrated with a hollow fiber membrane module for efficient blue hydrogen production: Modeling, validation, and techno-economic analysis," Applied Energy, Elsevier, vol. 354(PB).
    10. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Wang, Ningbo & Guo, Yanhua & Liu, Lu & Shao, Shuangquan, 2024. "Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    2. Tang, Xin & Li, Guiqiang & Zhao, Xudong & Shi, Kai & Lao, Li, 2022. "Simulation analysis and experimental validation of enhanced photovoltaic thermal module by harnessing heat," Applied Energy, Elsevier, vol. 309(C).
    3. Li, Senji & Chen, Zhenwu & Liu, Xing & Zhang, Xiaochun & Zhou, Yong & Gu, Wenbo & Ma, Tao, 2021. "Numerical simulation of a novel pavement integrated photovoltaic thermal (PIPVT) module," Applied Energy, Elsevier, vol. 283(C).
    4. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    5. Kazemian, Arash & Khatibi, Meysam & Entezari, Soroush & Ma, Tao & Yang, Hongxing, 2023. "Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Tian, Xinyi & Wang, Jun & Ji, Jie & Wang, Chuyao & Ke, Wei & Yuan, Shuang, 2023. "A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation," Energy, Elsevier, vol. 273(C).
    7. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    8. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    9. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    10. Wen, Xin & Ji, Jie & Li, Zhaomeng & Yao, Tingting, 2023. "Proposing of a novel PV/T module in series with a ST+TE module to pursue a round-the-clock continuous energy output," Energy, Elsevier, vol. 285(C).
    11. El-Askary, W.A. & Sakr, I.M. & Ibrahim, K.A. & Balabel, A., 2015. "Hydrodynamics characteristics of hydrogen evolution process through electrolysis: Numerical and experimental studies," Energy, Elsevier, vol. 90(P1), pages 722-737.
    12. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    13. Wen, Xin & Ji, Jie & Li, Zhaomeng, 2023. "Evaluation of the phase change material in regulating all-day electrical performance in the PV-MCHP-TE system in winter," Energy, Elsevier, vol. 263(PC).
    14. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Effect of air gap on a novel hybrid photovoltaic/thermal and thermally regenerative electrochemical cycle system," Applied Energy, Elsevier, vol. 293(C).
    15. Zou, Wenlong & Yu, Gang & Du, Xiaoze, 2024. "Energy and exergy analysis of photovoltaic thermal collectors: Comprehensive investigation of operating parameters in different dynamic models," Renewable Energy, Elsevier, vol. 221(C).
    16. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems," Energy, Elsevier, vol. 260(C).
    17. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2022. "Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG," Energy, Elsevier, vol. 249(C).
    18. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    19. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    20. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.