IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v154y2015icp21-25.html
   My bibliography  Save this article

Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors

Author

Listed:
  • Lin, Yi-Feng
  • Chang, Jun-Min
  • Ye, Qian
  • Tung, Kuo-Lun

Abstract

In this study, the pore size of macroporous Al2O3 tubular membranes were successfully shrunk by the coating of mesoporous silica aerogels on their surface. Fluoroalkylsilane (FAS) was successfully grafted on the surface of silica aerogel tubular membranes, resulting in a hydrophobic surface on the resulting membranes. The CO2 absorption flux of the FAS-modified silica aerogel tubular membrane reaches a stable value of approximately 0.6mmol/m2s in one day of operation. Furthermore, the as-prepared FAS-modified silica aerogel tubular membranes can be used continuously to absorb CO2 for at least one day, and they can be reused in three consecutive cycles of CO2 absorption. The results of this study demonstrated that these FAS-modified silica aerogel tubular membranes are not only durable but also reusable. The CO2 gases are almost absorbed completely (97% CO2 recovery) at liquid and gas flow rates of 500 and 200 sccm, respectively. Thus, these as-prepared silica aerogel tubular membranes with FAS modifications show promise for use in a large-scale CO2 absorption in a power plant.

Suggested Citation

  • Lin, Yi-Feng & Chang, Jun-Min & Ye, Qian & Tung, Kuo-Lun, 2015. "Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors," Applied Energy, Elsevier, vol. 154(C), pages 21-25.
  • Handle: RePEc:eee:appene:v:154:y:2015:i:c:p:21-25
    DOI: 10.1016/j.apenergy.2015.04.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    2. Buratti, C. & Moretti, E., 2012. "Experimental performance evaluation of aerogel glazing systems," Applied Energy, Elsevier, vol. 97(C), pages 430-437.
    3. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    4. Lv, Yuexia & Yu, Xinhai & Jia, Jingjing & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2012. "Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption," Applied Energy, Elsevier, vol. 90(1), pages 167-174.
    5. Yang, Jie & Yu, Xinhai & Yan, Jinyue & Tu, Shan-Tung & Dahlquist, Erik, 2013. "Effects of SO2 on CO2 capture using a hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 112(C), pages 755-764.
    6. Lu, Jian-Gang & Lu, Chun-Ting & Chen, Yue & Gao, Liu & Zhao, Xin & Zhang, Hui & Xu, Zheng-Wen, 2014. "CO2 capture by membrane absorption coupling process: Application of ionic liquids," Applied Energy, Elsevier, vol. 115(C), pages 573-581.
    7. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    8. Lv, Yuexia & Yu, Xinhai & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2012. "Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 97(C), pages 283-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    2. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    3. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    4. Fang, Zhongqiu & Yu, Xiaochen & Tang, Weiqiang & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung, 2017. "Denitration by oxidation-absorption with polypropylene hollow fiber membrane contactor," Applied Energy, Elsevier, vol. 206(C), pages 858-868.
    5. Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
    6. Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
    7. Hyun Sic Park & Dongwoan Kang & Jo Hong Kang & Kwanghwi Kim & Jaehyuk Kim & Hojun Song, 2021. "Selective Sulfur Dioxide Absorption from Simulated Flue Gas Using Various Aqueous Alkali Solutions in a Polypropylene Hollow Fiber Membrane Contactor: Removal Efficiency and Use of Sulfur Dioxide," IJERPH, MDPI, vol. 18(2), pages 1-15, January.
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    9. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    10. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    11. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    12. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    13. Ganapathy, H. & Shooshtari, A. & Dessiatoun, S. & Alshehhi, M. & Ohadi, M., 2014. "Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor," Applied Energy, Elsevier, vol. 119(C), pages 43-56.
    14. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    15. Ricciardi, P. & Belloni, E. & Cotana, F., 2014. "Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment," Applied Energy, Elsevier, vol. 134(C), pages 150-162.
    16. Gil-Lopez, Tomas & Gimenez-Molina, Carmen, 2013. "Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings," Applied Energy, Elsevier, vol. 101(C), pages 572-581.
    17. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    18. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    19. Baldinelli, G. & Bianchi, F., 2014. "Windows thermal resistance: Infrared thermography aided comparative analysis among finite volumes simulations and experimental methods," Applied Energy, Elsevier, vol. 136(C), pages 250-258.
    20. Elisa Moretti & Emanuele Bonamente & Cinzia Buratti & Franco Cotana, 2013. "Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings," Energies, MDPI, vol. 6(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:154:y:2015:i:c:p:21-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.