IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261922018803.html
   My bibliography  Save this article

Optical path model and energy performance optimization of aerogel glazing system filled with aerogel granules

Author

Listed:
  • Liu, Yang
  • Chen, Youming
  • Lu, Lin
  • Peng, Jinqing
  • Zheng, Dongmei
  • Lu, Bin

Abstract

Aerogel glazing system (AGS) is an advanced energy-efficient glazing system. According to Lambert-Beer Law, the optical path is a significant parameter that influences the optical performance of AGS, and thus influences the thermal-energy performance. However, the optical path of the granular aerogel layer in AGS has never been calculated before. In this study, a model was newly proposed to calculate the optical path of the granular aerogel layer. Firstly, the optical path of a single aerogel granule was calculated through geometrical optics. Then, the inhomogeneous distribution of aerogel granules was transformed to a homogeneous distribution through an equivalent model. Finally, the optical path of the aerogel layer was calculated by integration. The calculated optical path was utilized to simulate the spectral transmittance of different AGSs which were compared to the experimental results to validate the accuracy of the model. The results showed that the maximum difference between the simulated value and measured value of solar transmittance is 2.1 %. The results also indicated that the influence of the granule diameter on solar transmittance is slighter than the filling thickness. The energy performances of AGSs with different aerogel granules and different filling thicknesses were also simulated and evaluated under different weather conditions. The results showed that P1F16 (the diameter is 1 mm and the filling thickness is 16 mm) could reduce 22 % heat loss/gain when facing horizon and 10 % heat loss/gain when facing east and west in hot summer and cold winter region. The results also showed that P1F16 could reduce 17.36 % heat gain in the whole year in hot summer and warm winter region. It is also noticed that changing the aerogel granule’s diameter and the filling thickness has little effect on the energy performance of aerogel glazing system when faced north orientation.

Suggested Citation

  • Liu, Yang & Chen, Youming & Lu, Lin & Peng, Jinqing & Zheng, Dongmei & Lu, Bin, 2023. "Optical path model and energy performance optimization of aerogel glazing system filled with aerogel granules," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018803
    DOI: 10.1016/j.apenergy.2022.120623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922018803
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    2. Buratti, C. & Moretti, E., 2012. "Experimental performance evaluation of aerogel glazing systems," Applied Energy, Elsevier, vol. 97(C), pages 430-437.
    3. Liu, Yang & Lu, Lin & Chen, Youming & Lu, Bin, 2020. "Investigation on the optical and energy performances of different kinds of monolithic aerogel glazing systems," Applied Energy, Elsevier, vol. 261(C).
    4. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.
    5. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    6. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    7. Huang, Yu & Niu, Jian-lei, 2015. "Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load," Energy, Elsevier, vol. 83(C), pages 316-325.
    8. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    9. Yu, Philip C.H. & Chow, W.K., 2001. "Energy use in commercial buildings in Hong Kong," Applied Energy, Elsevier, vol. 69(4), pages 243-255, August.
    10. Chen, Youming & Xiao, Yaling & Zheng, Siqian & Liu, Yang & Li, Yupeng, 2018. "Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of China," Energy, Elsevier, vol. 163(C), pages 1115-1124.
    11. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    12. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeny Vladimirovich Kotov & Darya Nemova & Vitaly Sergeev & Anna Dontsova & Tatyana Koriakovtseva & Darya Andreeva, 2024. "Thermal Performance Assessment of Aerogel Application in Additive Construction of Energy-Efficient Buildings," Sustainability, MDPI, vol. 16(6), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm," Renewable Energy, Elsevier, vol. 155(C), pages 810-826.
    3. Zhou, Yuekuan, 2022. "A multi-stage supervised learning optimisation approach on an aerogel glazing system with stochastic uncertainty," Energy, Elsevier, vol. 258(C).
    4. Liu, Yang & Lu, Lin & Chen, Youming & Lu, Bin, 2020. "Investigation on the optical and energy performances of different kinds of monolithic aerogel glazing systems," Applied Energy, Elsevier, vol. 261(C).
    5. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    6. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    7. Berardi, Umberto & Nosrati, Roya Hamideh, 2018. "Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions," Energy, Elsevier, vol. 147(C), pages 1188-1202.
    8. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    9. Chen, Youming & Xiao, Yaling & Zheng, Siqian & Liu, Yang & Li, Yupeng, 2018. "Dynamic heat transfer model and applicability evaluation of aerogel glazing system in various climates of China," Energy, Elsevier, vol. 163(C), pages 1115-1124.
    10. Mary K. Carroll & Ann M. Anderson & Sri Teja Mangu & Zineb Hajjaj & Margeaux Capron, 2022. "Aesthetic Aerogel Window Design for Sustainable Buildings," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    11. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    12. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    13. Angeliki Kitsopoulou & Evangelos Bellos & Christos Tzivanidis, 2024. "An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design," Energies, MDPI, vol. 17(16), pages 1-55, August.
    14. Ahmed Abdelrady & Mohamed Hssan Hassan Abdelhafez & Ayman Ragab, 2021. "Use of Insulation Based on Nanomaterials to Improve Energy Efficiency of Residential Buildings in a Hot Desert Climate," Sustainability, MDPI, vol. 13(9), pages 1-17, May.
    15. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    16. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    17. Huang, Yu & Niu, Jian-lei, 2015. "Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load," Energy, Elsevier, vol. 83(C), pages 316-325.
    18. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell," Applied Energy, Elsevier, vol. 177(C), pages 196-203.
    19. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal performance of a combined suspended particle switchable device evacuated glazing," Applied Energy, Elsevier, vol. 169(C), pages 469-480.
    20. Michalis Michael & Fabio Favoino & Qian Jin & Alessandra Luna-Navarro & Mauro Overend, 2023. "A Systematic Review and Classification of Glazing Technologies for Building Façades," Energies, MDPI, vol. 16(14), pages 1-47, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.