IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp228-237.html
   My bibliography  Save this article

Comparison between Fanger's thermal comfort model and human exergy loss

Author

Listed:
  • Prek, Matjaž
  • Butala, Vincenc

Abstract

Numerous metrics and indices have been proposed for the assessment of thermal perception and comfort. Commonly used indices based on the estimate of the heat flow between the human and its environment includes the well-known Fanger's method, also known as the PMV-PPD thermal comfort model. Recently this thermodynamic approach has been expanded with the application of the second law of thermodynamics. In this paper, an exergy-based analysis of the relation between the human and its environment is presented. Heat and mass flow rate due to convection, radiation, evaporation and respiration are calculated and expressed in terms of exergy loss. This value is used in the modified Fanger's thermal comfort model, where the heat balance equation is replaced by the exergy loss. The paper builds upon prior studies on determination of internal and external exergy losses by revised and newly defined formulas taking into account clothing and indoor conditions. The results quantitatively show that thermal energy load in the original Fanger's PMV model could be substituted by exergy loss and it corresponds to a certain level of subjective assessed thermal comfort level.

Suggested Citation

  • Prek, Matjaž & Butala, Vincenc, 2017. "Comparison between Fanger's thermal comfort model and human exergy loss," Energy, Elsevier, vol. 138(C), pages 228-237.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:228-237
    DOI: 10.1016/j.energy.2017.07.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keutenedjian Mady, Carlos Eduardo & Silva Ferreira, Maurício & Itizo Yanagihara, Jurandir & Hilário Nascimento Saldiva, Paulo & de Oliveira Junior, Silvio, 2012. "Modeling the exergy behavior of human body," Energy, Elsevier, vol. 45(1), pages 546-553.
    2. Yang, Lei & Nagy, Zoltan & Goffin, Philippe & Schlueter, Arno, 2015. "Reinforcement learning for optimal control of low exergy buildings," Applied Energy, Elsevier, vol. 156(C), pages 577-586.
    3. Yildiz, Abdullah & Güngör, Ali, 2009. "Energy and exergy analyses of space heating in buildings," Applied Energy, Elsevier, vol. 86(10), pages 1939-1948, October.
    4. Mosaffa, A.H. & Garousi Farshi, L., 2016. "Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 515-526.
    5. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
    6. Prek, Matjaz, 2006. "Thermodynamical analysis of human thermal comfort," Energy, Elsevier, vol. 31(5), pages 732-743.
    7. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deshko, Valerii & Buyak, Nadia & Bilous, Inna & Voloshchuk, Volodymyr, 2020. "Reference state and exergy based dynamics analysis of energy performance of the “heat source - human - building envelope” system," Energy, Elsevier, vol. 200(C).
    2. Mateja Dovjak & Masanori Shukuya & Aleš Krainer, 2018. "User-Centred Healing-Oriented Conditions in the Design of Hospital Environments," IJERPH, MDPI, vol. 15(10), pages 1-28, September.
    3. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    4. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Zhimin & Jin, Xinqiao & Fang, Xing & Fan, Bo, 2016. "A dual-benchmark based energy analysis method to evaluate control strategies for building HVAC systems," Applied Energy, Elsevier, vol. 183(C), pages 700-714.
    2. Mady, Carlos Eduardo Keutenedjian & Henriques, Izabela Batista & de Oliveira, Silvio, 2015. "A thermodynamic assessment of therapeutic hypothermia techniques," Energy, Elsevier, vol. 85(C), pages 392-402.
    3. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2016. "Exergy model of the human heart," Energy, Elsevier, vol. 117(P2), pages 612-619.
    4. Henriques, Izabela Batista & Mady, Carlos Eduardo Keutenedjian & de Oliveira Junior, Silvio, 2017. "Assessment of thermal comfort conditions during physical exercise by means of exergy analysis," Energy, Elsevier, vol. 128(C), pages 609-617.
    5. Aloys Martial Ekoe A Akata & Donatien Njomo & Basant Agrawal & Auguste Mackpayen & Abdel-Hamid Mahamat Ali, 2022. "Tilt Angle and Orientation Assessment of Photovoltaic Thermal (PVT) System for Sub-Saharan Tropical Regions: Case Study Douala, Cameroon," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    6. Guo, Hongshan & Luo, Yongqiang & Meggers, Forrest & Simonetti, Marco, 2019. "Human body exergy consumption models’ evaluation and their sensitivities towards different environmental conditions," Energy, Elsevier, vol. 183(C), pages 1075-1088.
    7. Mady, Carlos Eduardo Keutenedjian & Albuquerque, Cyro & Fernandes, Tiago Lazzaretti & Hernandez, Arnaldo José & Saldiva, Paulo Hilário Nascimento & Yanagihara, Jurandir Itizo & de Oliveira, Silvio, 2013. "Exergy performance of human body under physical activities," Energy, Elsevier, vol. 62(C), pages 370-378.
    8. Genc, S. & Sorguven, E. & Ozilgen, M. & Aksan Kurnaz, I., 2013. "Unsteady exergy destruction of the neuron under dynamic stress conditions," Energy, Elsevier, vol. 59(C), pages 422-431.
    9. Yassine Chemingui & Adel Gastli & Omar Ellabban, 2020. "Reinforcement Learning-Based School Energy Management System," Energies, MDPI, vol. 13(23), pages 1-21, December.
    10. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    11. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    12. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    13. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    14. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    15. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    16. Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.
    17. Correa-Jullian, Camila & López Droguett, Enrique & Cardemil, José Miguel, 2020. "Operation scheduling in a solar thermal system: A reinforcement learning-based framework," Applied Energy, Elsevier, vol. 268(C).
    18. Li, Jiaqi & Tu, Rang & Liu, Mengdan & Wang, Siqi, 2021. "Exergy analysis of a novel multi-stage latent heat storage device based on uniformity of temperature differences fields," Energy, Elsevier, vol. 221(C).
    19. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    20. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:228-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.