IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v53y1996i1-2p179-192.html
   My bibliography  Save this article

Feasibility of using an integrated small-scale CHP unit plus desiccant wheel in a leisure complex

Author

Listed:
  • Babus'Haq, R. F.
  • Olsen, H.
  • Probert, S. D.

Abstract

By employing a natural-gas-fired combined heat-and-power (CHP) system in a leisure complex, the waste heat from the CHP units can be used to regenerate a desiccant wheel. The latter is employed to provide dehumidification for the indoor swimming pools in a leisure complex. A payback period of ~4 years has been predicted for this system, assuming zero amortised value for the CHP units that had to be replaced. Any resaleable value for the removed units would lead to an even shorter payback period.

Suggested Citation

  • Babus'Haq, R. F. & Olsen, H. & Probert, S. D., 1996. "Feasibility of using an integrated small-scale CHP unit plus desiccant wheel in a leisure complex," Applied Energy, Elsevier, vol. 53(1-2), pages 179-192.
  • Handle: RePEc:eee:appene:v:53:y:1996:i:1-2:p:179-192
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0306-2619(95)00061-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babus'Haq, R.F. & Probert, S.D., 1994. "Combined heat-and-power market-penetration in the UK: Problems and opportunities," Applied Energy, Elsevier, vol. 48(4), pages 315-334.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Hyungmook & Lee, Dae-Young, 2017. "Experimental investigation and introduction of a similarity parameter for characterizing the heat and mass transfer in polymer desiccant wheels," Energy, Elsevier, vol. 120(C), pages 705-717.
    2. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2014. "Performance analysis of a two-stage desiccant cooling system," Applied Energy, Elsevier, vol. 113(C), pages 1562-1574.
    3. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    4. Angrisani, Giovanni & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2012. "Experimental analysis on the dehumidification and thermal performance of a desiccant wheel," Applied Energy, Elsevier, vol. 92(C), pages 563-572.
    5. Tu, Rang & Liu, Xiao-Hua & Jiang, Yi, 2015. "Irreversible processes and performance improvement of desiccant wheel dehumidification and cooling systems using exergy," Applied Energy, Elsevier, vol. 145(C), pages 331-344.
    6. La, D. & Dai, Y.J. & Li, Y. & Tang, Z.Y. & Ge, T.S. & Wang, R.Z., 2013. "An experimental investigation on the integration of two-stage dehumidification and regenerative evaporative cooling," Applied Energy, Elsevier, vol. 102(C), pages 1218-1228.
    7. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dunstan, D. & Probert, D., 2002. "Raising the effectiveness of electricity generation (per unit of fossil-fuel combusted) by less conventional means," Applied Energy, Elsevier, vol. 73(2), pages 103-138, October.
    2. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    3. Dunstan, D. & Probert, D., 2001. "Increasing electricity generation per unit of fossil fuel so expended in diesel engines," Applied Energy, Elsevier, vol. 70(3), pages 267-280, November.
    4. D. Mcevoy & D.C. Gibbs & J.W.S. Longhurst, 1998. "Energy Supply Measures to Reduce Regional Carbon Intensity: Opportunities and Constraints," Energy & Environment, , vol. 9(3), pages 297-319, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:53:y:1996:i:1-2:p:179-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.