Experimental demonstration and application planning of high temperature superconducting energy storage system for renewable power grids
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2014.07.022
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
- Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
- Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
- Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Bianchi, Fernando D., 2013. "Energy management of flywheel-based energy storage device for wind power smoothing," Applied Energy, Elsevier, vol. 110(C), pages 207-219.
- Hartikainen, Teemu & Mikkonen, Risto & Lehtonen, Jorma, 2007. "Environmental advantages of superconducting devices in distributed electricity-generation," Applied Energy, Elsevier, vol. 84(1), pages 29-38, January.
- Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
- Shi, Jing & Xu, Ying & Liao, Meng & Guo, Shuqiang & Li, Yuanyuan & Ren, Li & Su, Rongyu & Li, Shujian & Zhou, Xiao & Tang, Yuejin, 2019. "Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet," Applied Energy, Elsevier, vol. 248(C), pages 1-17.
- Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
- Biswas (Raha), Syamasree & Mandal, Kamal Krishna & Chakraborty, Niladri, 2016. "Pareto-efficient double auction power transactions for economic reactive power dispatch," Applied Energy, Elsevier, vol. 168(C), pages 610-627.
- Li, Chao & Li, Gengyao & Xin, Ying & Li, Bin, 2022. "Mechanism of a novel mechanically operated contactless HTS energy converter," Energy, Elsevier, vol. 241(C).
- Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
- Luo, Yu & Wu, Xiao-yu & Shi, Yixiang & Ghoniem, Ahmed F. & Cai, Ningsheng, 2018. "Exergy analysis of an integrated solid oxide electrolysis cell-methanation reactor for renewable energy storage," Applied Energy, Elsevier, vol. 215(C), pages 371-383.
- Cao, Qiang, 2018. "Attainability of the Carnot efficiency with real gases in the regenerator of the refrigeration cycle," Applied Energy, Elsevier, vol. 220(C), pages 705-712.
- Saboori, Hedayat & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2015. "Reliability improvement in radial electrical distribution network by optimal planning of energy storage systems," Energy, Elsevier, vol. 93(P2), pages 2299-2312.
- Trocino, Stefano & Lo Faro, Massimiliano & Zignani, Sabrina Campagna & Antonucci, Vincenzo & Aricò, Antonino Salvatore, 2019. "High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650 °C)," Applied Energy, Elsevier, vol. 233, pages 386-394.
- Zhu, Lingfeng & Wang, Yinshun & Guo, Yuetong & Liu, Wei & Hu, Chengyang, 2023. "Current decay and compensation of a closed-loop HTS magnet in non-uniform magnetic fields based on electro-magneto-thermal semi-analytical analysis," Energy, Elsevier, vol. 277(C).
- Wang, Wei & Sun, Bo & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2020. "An improved min-max power dispatching method for integration of variable renewable energy," Applied Energy, Elsevier, vol. 276(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
- Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
- Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
- Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
- Weitzel, Timm & Glock, Christoph H., 2018. "Energy management for stationary electric energy storage systems: A systematic literature review," European Journal of Operational Research, Elsevier, vol. 264(2), pages 582-606.
- Cheng, Yu-Shan & Chuang, Man-Tsai & Liu, Yi-Hua & Wang, Shun-Chung & Yang, Zong-Zhen, 2016. "A particle swarm optimization based power dispatch algorithm with roulette wheel re-distribution mechanism for equality constraint," Renewable Energy, Elsevier, vol. 88(C), pages 58-72.
- Gholam Ali Alizadeh & Tohid Rahimi & Mohsen Hasan Babayi Nozadian & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Improving Microgrid Frequency Regulation Based on the Virtual Inertia Concept while Considering Communication System Delay," Energies, MDPI, vol. 12(10), pages 1-15, May.
- Zhao, Pan & Dai, Yiping & Wang, Jiangfeng, 2014. "Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application," Energy, Elsevier, vol. 70(C), pages 674-684.
- Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
- Mousavi G., S.M. & Nikdel, M., 2014. "Various battery models for various simulation studies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 477-485.
- Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
- Sun, Hao & Luo, Xing & Wang, Jihong, 2015. "Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage," Applied Energy, Elsevier, vol. 137(C), pages 617-628.
- Xu, Jiuping & Liu, Tingting, 2020. "Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development," Energy Policy, Elsevier, vol. 142(C).
- Chong, W.T. & Poh, S.C. & Fazlizan, A. & Yip, S.Y. & Chang, C.K. & Hew, W.P., 2013. "Early development of an energy recovery wind turbine generator for exhaust air system," Applied Energy, Elsevier, vol. 112(C), pages 568-575.
- Zhao, Pan & Wang, Mingkun & Wang, Jiangfeng & Dai, Yiping, 2015. "A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application," Energy, Elsevier, vol. 84(C), pages 825-839.
- Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
- Daghi, Majid & Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, Elsevier, vol. 183(C), pages 456-469.
- Jiang, Joe-Air & Su, Yu-Li & Shieh, Jyh-Cherng & Kuo, Kun-Chang & Lin, Tzu-Shiang & Lin, Ta-Te & Fang, Wei & Chou, Jui-Jen & Wang, Jen-Cheng, 2014. "On application of a new hybrid maximum power point tracking (MPPT) based photovoltaic system to the closed plant factory," Applied Energy, Elsevier, vol. 124(C), pages 309-324.
- Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
- Mo, Hua-Dong & Li, Yan-Fu & Zio, Enrico, 2016. "A system-of-systems framework for the reliability analysis of distributed generation systems accounting for the impact of degraded communication networks," Applied Energy, Elsevier, vol. 183(C), pages 805-822.
More about this item
Keywords
Application planning; Dynamic simulation; High temperature superconducting magnetic energy storage system (HT SMES); Power fluctuation; Zhangbei wind power grid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:137:y:2015:i:c:p:692-698. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.