IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v84y2007i1p29-38.html
   My bibliography  Save this article

Environmental advantages of superconducting devices in distributed electricity-generation

Author

Listed:
  • Hartikainen, Teemu
  • Mikkonen, Risto
  • Lehtonen, Jorma

Abstract

Distributed generation (DG) is emerging as an alternative to a centralized electricity-generation system. The goals of DG include the minimization of the environmental impacts of energy production and introduction of new renewable energy-sources to the distribution network. Superconducting devices are also proposed for DG because of their high efficiencies as well as smaller size and more stable operation during peak loads. This study concentrates on the environmental benefits of superconducting machinery by comparing suitable devices with their competitors in DG-networks. Exploitable superconducting devices in DG include superconducting magnetic energy-storage (SMES), flywheels and cable systems. Life-cycle assessment (LCA) is used as a tool in comparisons of energy-storage devices suitable for DG: SMESs, flywheels and batteries. In LCA, all material inputs, energy consumptions, wastes, and emissions are assessed over the life-cycle of the product. Finally, a commercialization schedule for HTS-cables is presented and an unconventional concept for a DG-network is suggested for further examination.

Suggested Citation

  • Hartikainen, Teemu & Mikkonen, Risto & Lehtonen, Jorma, 2007. "Environmental advantages of superconducting devices in distributed electricity-generation," Applied Energy, Elsevier, vol. 84(1), pages 29-38, January.
  • Handle: RePEc:eee:appene:v:84:y:2007:i:1:p:29-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(06)00049-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    3. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    4. Niknam, Taher, 2011. "A new HBMO algorithm for multiobjective daily Volt/Var control in distribution systems considering Distributed Generators," Applied Energy, Elsevier, vol. 88(3), pages 778-788, March.
    5. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    6. Niknam, Taher & Firouzi, Bahman Bahmani & Ostadi, Amir, 2010. "A new fuzzy adaptive particle swarm optimization for daily Volt/Var control in distribution networks considering distributed generators," Applied Energy, Elsevier, vol. 87(6), pages 1919-1928, June.
    7. Xiong, Fengjiao & Zhou, Debi & Xie, Zhipeng & Chen, Yunyang, 2012. "A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application," Applied Energy, Elsevier, vol. 99(C), pages 291-296.
    8. Zhu, Jiahui & Yuan, Weijia & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Chen, Panpan & Yang, Yanfang & Zhang, Min & Huang, Xiaohua & Li, Zhenming, 2015. "Experimental demonstration and application planning of high temperature superconducting energy storage system for renewable power grids," Applied Energy, Elsevier, vol. 137(C), pages 692-698.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:84:y:2007:i:1:p:29-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.