IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v62y2016icp895-907.html
   My bibliography  Save this article

A review on compressed air energy storage – A pathway for smart grid and polygeneration

Author

Listed:
  • Venkataramani, Gayathri
  • Parankusam, Prasanna
  • Ramalingam, Velraj
  • Wang, Jihong

Abstract

The increase in energy demand and reduction in resources for conventional energy production along with various environmental impacts, promote the use of renewable energy for electricity generation and other energy-need applications around the world. Wind power has emerged as the biggest renewable energy source in the world, whose potential, when employed properly, serves to provide the best power output. In order to achieve self-sustenance in energy supply and to match the critical needs of impoverished and developing regions, wind power has proven to be the best solution. However, wind power is intermittent and unstable in nature and hence creates lot of grid integration and power fluctuation issues, which ultimately disturb the stability of the grid. In such cases, energy storage technologies are highly essential and researchers turned their attention to find efficient ways of storing energy to achieve maximum utilization. The use of batteries to store wind energy is very expensive and not practical for wind applications. Compressed Air Energy Storage (CAES) is found to be a viable solution to store energy generated from wind and other renewable energy systems. A detailed review on various aspects of a CAES system has been made and presented in this paper which includes the thermodynamic analysis, modeling and simulation analysis, experimental investigation, various control strategies, some case studies and economic evaluation with the role of energy storage towards smart grid and poly-generation.

Suggested Citation

  • Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
  • Handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:895-907
    DOI: 10.1016/j.rser.2016.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garvey, Seamus D., 2012. "The dynamics of integrated compressed air renewable energy systems," Renewable Energy, Elsevier, vol. 39(1), pages 271-292.
    2. Fertig, Emily & Apt, Jay, 2011. "Economics of compressed air energy storage to integrate wind power: A case study in ERCOT," Energy Policy, Elsevier, vol. 39(5), pages 2330-2342, May.
    3. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    4. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    5. Y. Zimmels & F. Kirzhner & B. Krasovitski, 2002. "Design Criteria for Compressed Air Storage in Hard Rock," Energy & Environment, , vol. 13(6), pages 851-872, November.
    6. Marano, Vincenzo & Rizzo, Gianfranco & Tiano, Francesco Antonio, 2012. "Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage," Applied Energy, Elsevier, vol. 97(C), pages 849-859.
    7. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    8. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    9. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.
    10. Saadat, Mohsen & Shirazi, Farzad A. & Li, Perry Y., 2015. "Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines," Applied Energy, Elsevier, vol. 137(C), pages 603-616.
    11. Kim, Y.M. & Shin, D.G. & Favrat, D., 2011. "Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis," Energy, Elsevier, vol. 36(10), pages 6220-6233.
    12. Karellas, S. & Tzouganatos, N., 2014. "Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 865-882.
    13. Satkin, Mohammad & Noorollahi, Younes & Abbaspour, Majid & Yousefi, Hossein, 2014. "Multi criteria site selection model for wind-compressed air energy storage power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 579-590.
    14. Loisel, Rodica & Mercier, Arnaud & Gatzen, Christoph & Elms, Nick, 2011. "Market evaluation of hybrid wind-storage power systems in case of balancing responsibilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5003-5012.
    15. Yucekaya, Ahmet, 2013. "The operational economics of compressed air energy storage systems under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 298-305.
    16. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    17. Huanran Wang & Liqin Wang & Xinbing Wang & Erren Yao, 2013. "A Novel Pumped Hydro Combined with Compressed Air Energy Storage System," Energies, MDPI, vol. 6(3), pages 1-14, March.
    18. Baqari, F. & Vahidi, B., 2013. "Small-compressed air energy storage system integrated with induction generator for metropolises: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 365-370.
    19. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    20. Li, Yongliang & Wang, Xiang & Li, Dacheng & Ding, Yulong, 2012. "A trigeneration system based on compressed air and thermal energy storage," Applied Energy, Elsevier, vol. 99(C), pages 316-323.
    21. Madlener, Reinhard & Latz, Jochen, 2013. "Economics of centralized and decentralized compressed air energy storage for enhanced grid integration of wind power," Applied Energy, Elsevier, vol. 101(C), pages 299-309.
    22. Salgi, Georges & Lund, Henrik, 2008. "System behaviour of compressed-air energy-storage in Denmark with a high penetration of renewable energy sources," Applied Energy, Elsevier, vol. 85(4), pages 182-189, April.
    23. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Majid, Md Shah & Rahman, Hasimah Abdul, 2013. "Review of storage schemes for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 237-247.
    24. Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
    25. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    26. Safaei, Hossein & Keith, David, 2014. "Compressed air energy storage with waste heat export: An Alberta case study," Scholarly Articles 13489207, Harvard Kennedy School of Government.
    27. Jubeh, Naser M. & Najjar, Yousef S.H., 2012. "Power augmentation with CAES (compressed air energy storage) by air injection or supercharging makes environment greener," Energy, Elsevier, vol. 38(1), pages 228-235.
    28. Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
    29. Basbous, Tammam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2012. "Pneumatic hybridization of a diesel engine using compressed air storage for wind-diesel energy generation," Energy, Elsevier, vol. 38(1), pages 264-275.
    30. Sun, Hao & Luo, Xing & Wang, Jihong, 2015. "Feasibility study of a hybrid wind turbine system – Integration with compressed air energy storage," Applied Energy, Elsevier, vol. 137(C), pages 617-628.
    31. Haisheng Chen & Xinjing Zhang & Jinchao Liu & Chunqing Tan, 2013. "Compressed Air Energy Storage," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    32. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    33. Succar, Samir & Denkenberger, David C. & Williams, Robert H., 2012. "Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage," Applied Energy, Elsevier, vol. 96(C), pages 222-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2017. "Sensitivity analysis for the energy performance assessment of hybrid compressed air energy storage systems," Applied Energy, Elsevier, vol. 206(C), pages 1552-1563.
    2. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    3. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    5. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    6. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
    7. de Bosio, Federico & Verda, Vittorio, 2015. "Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market," Applied Energy, Elsevier, vol. 152(C), pages 173-182.
    8. Tong, Shuiguang & Cheng, Zhewu & Cong, Feiyun & Tong, Zheming & Zhang, Yidong, 2018. "Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 125(C), pages 73-86.
    9. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2014. "Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 77(C), pages 460-477.
    10. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    11. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    12. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    13. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    14. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
    16. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
    17. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    18. Brown, T.L. & Atluri, V.P. & Schmiedeler, J.P., 2014. "A low-cost hybrid drivetrain concept based on compressed air energy storage," Applied Energy, Elsevier, vol. 134(C), pages 477-489.
    19. Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
    20. Wang, Zhiwen & Xiong, Wei & Ting, David S.-K. & Carriveau, Rupp & Wang, Zuwen, 2016. "Conventional and advanced exergy analyses of an underwater compressed air energy storage system," Applied Energy, Elsevier, vol. 180(C), pages 810-822.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:62:y:2016:i:c:p:895-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.