IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip2p1423-1441.html
   My bibliography  Save this article

An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park

Author

Listed:
  • Theo, Wai Lip
  • Lim, Jeng Shiun
  • Wan Alwi, Sharifah Rafidah
  • Mohammad Rozali, Nor Erniza
  • Ho, Wai Shin
  • Abdul-Manan, Zainuddin

Abstract

The application of on-grid hybrid power system (HPS) has been effective for harnessing renewable energy resources and ensuring environmental sustainability. A number of algebraic and mathematical modeling approaches have been introduced for the optimisation of on-grid HPS. While algebraic power pinch analysis (PoPA) tools have been developed to enable the selection of cost-effective energy storage technology, the available mathematical modeling approaches have yet to consider the economics and storage system selection in the design of an optimal on-grid HPS. This work presents a mixed-integer linear programming (MILP) for the optimal design of an on-grid HPS with the minimum net present value (NPV) of the overall electricity production cost and the selection of the optimum energy storage technology. Two case studies are presented in this work. In the former, the differences between the developed MILP model and previous methods are highlighted, with sensitivity analysis to investigate the impact of electricity tariff on the on-grid HPS. In the second case study, the developed MILP model was applied to an Eco-Industrial Park (EIP) case study with energy storage technology selection. Lead-acid battery system was found to be the optimal choice due to its low investment requirement.

Suggested Citation

  • Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p2:p:1423-1441
    DOI: 10.1016/j.energy.2016.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216306533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    2. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    3. Farhadi Kangarlu, Mohammad & Alizadeh Pahlavani, Mohammad Reza, 2014. "Cascaded multilevel converter based superconducting magnetic energy storage system for frequency control," Energy, Elsevier, vol. 70(C), pages 504-513.
    4. Rodrigues, E.M.G. & Godina, R. & Santos, S.F. & Bizuayehu, A.W. & Contreras, J. & Catalão, J.P.S., 2014. "Energy storage systems supporting increased penetration of renewables in islanded systems," Energy, Elsevier, vol. 75(C), pages 265-280.
    5. Thomas, Brinda A. & Azevedo, Inês L. & Morgan, Granger, 2012. "Edison Revisited: Should we use DC circuits for lighting in commercial buildings?," Energy Policy, Elsevier, vol. 45(C), pages 399-411.
    6. Zahedi, A., 2011. "A review of drivers, benefits, and challenges in integrating renewable energy sources into electricity grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4775-4779.
    7. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    8. Azzopardi, Brian & Gabriel-Buenaventura, Alejandro, 2014. "Feasibility assessment for high penetration of distributed photovoltaics based on net demand planning," Energy, Elsevier, vol. 76(C), pages 233-240.
    9. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    10. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based MILP (mixed-integer linear programming) formulation for targeting and design of hybrid power systems," Energy, Elsevier, vol. 65(C), pages 550-559.
    11. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    12. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    13. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    14. Yajing Gao & Jianpeng Liu & Jin Yang & Haifeng Liang & Jiancheng Zhang, 2014. "Multi-Objective Planning of Multi-Type Distributed Generation Considering Timing Characteristics and Environmental Benefits," Energies, MDPI, vol. 7(10), pages 1-16, September.
    15. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    16. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    17. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Bianchi, Fernando D., 2013. "Energy management of flywheel-based energy storage device for wind power smoothing," Applied Energy, Elsevier, vol. 110(C), pages 207-219.
    18. Zhao, Pan & Wang, Jiangfeng & Dai, Yiping, 2015. "Capacity allocation of a hybrid energy storage system for power system peak shaving at high wind power penetration level," Renewable Energy, Elsevier, vol. 75(C), pages 541-549.
    19. Li, Jianwei & Gee, Anthony M. & Zhang, Min & Yuan, Weijia, 2015. "Analysis of battery lifetime extension in a SMES-battery hybrid energy storage system using a novel battery lifetime model," Energy, Elsevier, vol. 86(C), pages 175-185.
    20. Borhanazad, Hanieh & Mekhilef, Saad & Gounder Ganapathy, Velappa & Modiri-Delshad, Mostafa & Mirtaheri, Ali, 2014. "Optimization of micro-grid system using MOPSO," Renewable Energy, Elsevier, vol. 71(C), pages 295-306.
    21. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    22. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    23. Cosentino, Valentina & Favuzza, Salvatore & Graditi, Giorgio & Ippolito, Mariano Giuseppe & Massaro, Fabio & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2012. "Smart renewable generation for an islanded system. Technical and economic issues of future scenarios," Energy, Elsevier, vol. 39(1), pages 196-204.
    24. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    25. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    26. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    27. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    28. Hashim, Haslenda & Ho, Wai Shin & Lim, Jeng Shiun & Macchietto, Sandro, 2014. "Integrated biomass and solar town: Incorporation of load shifting and energy storage," Energy, Elsevier, vol. 75(C), pages 31-39.
    29. Zhao, Pan & Wang, Mingkun & Wang, Jiangfeng & Dai, Yiping, 2015. "A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application," Energy, Elsevier, vol. 84(C), pages 825-839.
    30. Zhu, Jiahui & Qiu, Ming & Wei, Bin & Zhang, Hongjie & Lai, Xiaokang & Yuan, Weijia, 2013. "Design, dynamic simulation and construction of a hybrid HTS SMES (high-temperature superconducting magnetic energy storage systems) for Chinese power grid," Energy, Elsevier, vol. 51(C), pages 184-192.
    31. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    32. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    2. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    5. Li, Tianxiao & Li, Zheng & Li, Weiqi, 2020. "Scenarios analysis on the cross-region integrating of renewable power based on a long-period cost-optimization power planning model," Renewable Energy, Elsevier, vol. 156(C), pages 851-863.
    6. Panda, Ambarish & Mishra, Umakanta & Aviso, Kathleen B., 2020. "Optimizing hybrid power systems with compressed air energy storage," Energy, Elsevier, vol. 205(C).
    7. Kong, Karen Gah Hie & How, Bing Shen & Lim, Juin Yau & Leong, Wei Dong & Teng, Sin Yong & Ng, Wendy Pei Qin & Moser, Irene & Sunarso, Jaka, 2022. "Shaving electric bills with renewables? A multi-period pinch-based methodology for energy planning," Energy, Elsevier, vol. 239(PD).
    8. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2455-2470.
    9. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    10. Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
    11. Misrol, Mohd Arif & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Manan, Zainuddin Abd, 2022. "Optimising renewable energy at the eco-industrial park: A mathematical modelling approach," Energy, Elsevier, vol. 261(PB).
    12. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    13. Laing, Harry & O'Malley, Chris & Browne, Anthony & Rutherford, Tony & Baines, Tony & Moore, Andrew & Black, Ken & Willis, Mark J., 2022. "Optimisation of energy usage and carbon emissions monitoring using MILP for an advanced anaerobic digester plant," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    3. Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
    4. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    5. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
    6. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    7. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    8. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    9. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    10. Ho, Wai Shin & Macchietto, Sandro & Lim, Jeng Shiun & Hashim, Haslenda & Muis, Zarina Ab. & Liu, Wen Hui, 2016. "Optimal scheduling of energy storage for renewable energy distributed energy generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1100-1107.
    11. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
    12. Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
    13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    14. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    15. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    16. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    17. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    18. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    19. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    20. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p2:p:1423-1441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.