IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp165-173.html
   My bibliography  Save this article

Enhancing micro gas turbine performance through fogging technique: Experimental analysis

Author

Listed:
  • Renzi, M.
  • Caresana, F.
  • Pelagalli, L.
  • Comodi, G.

Abstract

This paper describes a test bench that has been designed to implement the fogging inlet air cooling technique to a 100kWe Microturbine (MGT) and reports the power and efficiency increase of the machine. Indeed, one of the main issues of MGTs, which has also been observed and documented in large sized gas turbines, is their strong sensibility to inlet air temperature. One of the most interesting technology in terms of low plant complexity to limit the MGTs performance loss is the high pressure fogging. Although cooling down the inlet air temperature with this technique has already been analyzed for medium/large gas turbines systems, there are very limited reports available on MGTs and few experimental data are documented.

Suggested Citation

  • Renzi, M. & Caresana, F. & Pelagalli, L. & Comodi, G., 2014. "Enhancing micro gas turbine performance through fogging technique: Experimental analysis," Applied Energy, Elsevier, vol. 135(C), pages 165-173.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:165-173
    DOI: 10.1016/j.apenergy.2014.08.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Cheng & Yang, Zeliang & Cai, Ruixian, 2009. "Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant," Applied Energy, Elsevier, vol. 86(6), pages 848-856, June.
    2. Kim, Kyoung Hoon & Perez-Blanco, Horacio, 2007. "Potential of regenerative gas-turbine systems with high fogging compression," Applied Energy, Elsevier, vol. 84(1), pages 16-28, January.
    3. Khaliq, Abdul & Dincer, Ibrahim, 2011. "Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling," Energy, Elsevier, vol. 36(5), pages 2662-2670.
    4. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Current utilization of microturbines as a part of a hybrid system in distributed generation technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 142-152.
    5. Pepermans, G. & Driesen, J. & Haeseldonckx, D. & Belmans, R. & D'haeseleer, W., 2005. "Distributed generation: definition, benefits and issues," Energy Policy, Elsevier, vol. 33(6), pages 787-798, April.
    6. Roumeliotis, I. & Mathioudakis, K., 2010. "Evaluation of water injection effect on compressor and engine performance and operability," Applied Energy, Elsevier, vol. 87(4), pages 1207-1216, April.
    7. Belmonte, S. & Núñez, V. & Viramonte, J.G. & Franco, J., 2009. "Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1475-1484, August.
    8. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    9. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    2. Duan, Jiandong & Liu, Junjie & Xiao, Qian & Fan, Shaogui & Sun, Li & Wang, Guanglin, 2019. "Cooperative controls of micro gas turbine and super capacitor hybrid power generation system for pulsed power load," Energy, Elsevier, vol. 169(C), pages 1242-1258.
    3. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    4. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
    5. Zornek, T. & Monz, T. & Aigner, M., 2015. "Performance analysis of the micro gas turbine Turbec T100 with a new FLOX-combustion system for low calorific fuels," Applied Energy, Elsevier, vol. 159(C), pages 276-284.
    6. De Paepe, Ward & Pappa, Alessio & Montero Carrero, Marina & Bricteux, Laurent & Contino, Francesco, 2020. "Reducing waste heat to the minimum: Thermodynamic assessment of the M-power cycle concept applied to micro Gas Turbines," Applied Energy, Elsevier, vol. 279(C).
    7. Beigi, Behnam Feizollah & Mehdipour, Ramin, 2020. "Investigation of cold storage performance to improve management of power generation in thermal power plants in Iran," Energy, Elsevier, vol. 213(C).
    8. Renzi, Massimiliano & Patuzzi, Francesco & Baratieri, Marco, 2017. "Syngas feed of micro gas turbines with steam injection: Effects on performance, combustion and pollutants formation," Applied Energy, Elsevier, vol. 206(C), pages 697-707.
    9. Duan, Jiandong & Fan, Shaogui & Wu, Fengjiang & Sun, Li & Wang, Guanglin, 2017. "Power balance control of micro gas turbine generation system based on supercapacitor energy storage," Energy, Elsevier, vol. 119(C), pages 442-452.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Comodi, G. & Renzi, M. & Caresana, F. & Pelagalli, L., 2015. "Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique," Applied Energy, Elsevier, vol. 147(C), pages 40-48.
    2. Caresana, F. & Pelagalli, L. & Comodi, G. & Renzi, M., 2014. "Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior," Applied Energy, Elsevier, vol. 124(C), pages 17-27.
    3. Comodi, Gabriele & Renzi, Massimiliano & Cioccolanti, Luca & Caresana, Flavio & Pelagalli, Leonardo, 2015. "Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies," Energy, Elsevier, vol. 89(C), pages 226-235.
    4. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    5. Hassan Athari & Saeed Soltani & Marc A. Rosen & Seyed Mohammad Seyed Mahmoudi & Tatiana Morosuk, 2015. "Comparative Exergoeconomic Analyses of Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling," Sustainability, MDPI, vol. 7(9), pages 1-22, September.
    6. Kyoung Hoon Kim & Kyoungjin Kim, 2012. "Exergy Analysis of Overspray Process in Gas Turbine Systems," Energies, MDPI, vol. 5(8), pages 1-14, July.
    7. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    8. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Manoharan, S. & Gnanambal, K., 2019. "Optimized FOPID controller for improving steady state and transient response of Microturbine Generation system," Energy, Elsevier, vol. 189(C).
    10. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    11. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    12. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    13. Ehyaei, M.A. & Mozafari, A. & Alibiglou, M.H., 2011. "Exergy, economic & environmental (3E) analysis of inlet fogging for gas turbine power plant," Energy, Elsevier, vol. 36(12), pages 6851-6861.
    14. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    15. Moradi, Ramin & Cioccolanti, Luca & Del Zotto, Luca & Renzi, Massimiliano, 2023. "Comparative sensitivity analysis of micro-scale gas turbine and supercritical CO2 systems with bottoming organic Rankine cycles fed by the biomass gasification for decentralized trigeneration," Energy, Elsevier, vol. 266(C).
    16. Mallikarjun, Sreekanth & Lewis, Herbert F., 2014. "Energy technology allocation for distributed energy resources: A strategic technology-policy framework," Energy, Elsevier, vol. 72(C), pages 783-799.
    17. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    18. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    19. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    20. Zongming Yang & Roman Radchenko & Mykola Radchenko & Andrii Radchenko & Victoria Kornienko, 2022. "Cooling Potential of Ship Engine Intake Air Cooling and Its Realization on the Route Line," Sustainability, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:165-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.