IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v129y2014icp299-307.html
   My bibliography  Save this article

Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure

Author

Listed:
  • Kim, Ryang-Gyoon
  • Hwang, Chan-Won
  • Jeon, Chung-Hwan

Abstract

A pressurized wire-heating reactor (PWHR) that can provide experimental conditions up to pressures and temperatures of 50atm and 1750K, respectively, was developed to evaluate the intrinsic reaction kinetics of CO2 gasification for Berau sub-bituminous coal char (Indonesian coal) at elevated pressure using a synchronized experimental method. This synchronization system consists of a thermocouple wire for both heating and direct measurement of the particle temperature and a photodetector sensor for measuring the intensity of the luminous emission from the reaction particle to determine the ignition/burnout points. The intrinsic reaction kinetics obtained from PWHR, which was analyzed from nth order reaction rate equations, was verified by comparison with TGA results. The internal/external effectiveness factor was analyzed to determine the effects of high pressure (up to 30atm) and temperature (up to 1723K) on char-CO2 gasification. Accordingly, the intrinsic activation energies based on nth order reaction rate equation were determined to be 152kJ/mol (via TGA, 75μm char particle), 150kJ/mol (via TGA, 800μm char particle), and 149.2kJ/mol (via PWHR, 800μm char particle).

Suggested Citation

  • Kim, Ryang-Gyoon & Hwang, Chan-Won & Jeon, Chung-Hwan, 2014. "Kinetics of coal char gasification with CO2: Impact of internal/external diffusion at high temperature and elevated pressure," Applied Energy, Elsevier, vol. 129(C), pages 299-307.
  • Handle: RePEc:eee:appene:v:129:y:2014:i:c:p:299-307
    DOI: 10.1016/j.apenergy.2014.05.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914005029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.05.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    2. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jie & Ma, Liping & Yang, Jing & Liu, Hongpan & Liu, Shengyu & Yang, Yingchun & Mu, Liusen & Wei, Yi & Ao, Ran & Guo, Zhiying & Dai, Quxiu & Wang, Huiming, 2019. "Thermodynamic and kinetic analysis of CuO-CaSO4 oxygen carrier in chemical looping gasification," Energy, Elsevier, vol. 188(C).
    2. Li, Yu & Fan, Weidong, 2016. "Effect of char gasification on NOx formation process in the deep air-staged combustion in a 20kW down flame furnace," Applied Energy, Elsevier, vol. 164(C), pages 258-267.
    3. He, Qing & Gong, Yan & Ding, Lu & Guo, Qinghua & Yoshikawa, Kunio & Yu, Guangsuo, 2021. "Reactivity prediction and mechanism analysis of raw and demineralized coal char gasification," Energy, Elsevier, vol. 229(C).
    4. Liu, Yacheng & Fan, Weidong & Li, Yu, 2016. "Numerical investigation of air-staged combustion emphasizing char gasification and gas temperature deviation in a large-scale, tangentially fired pulverized-coal boiler," Applied Energy, Elsevier, vol. 177(C), pages 323-334.
    5. Gyeong-Min Kim & Jong-Pil Kim & Kevin Yohanes Lisandy & Chung-Hwan Jeon, 2017. "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite," Energies, MDPI, vol. 10(9), pages 1-14, September.
    6. Zhang, Jie & Zheng, Nan & Wang, Jie, 2016. "Two-stage hydrogasification of different rank coals with a focus on relationships between yields of products and coal properties or structures," Applied Energy, Elsevier, vol. 173(C), pages 438-447.
    7. Baath, Yuvraj Singh & Nikrityuk, Petr A. & Gupta, Rajender, 2022. "Experimental and numerical verifications of biochar gasification kinetics using TGA," Renewable Energy, Elsevier, vol. 185(C), pages 717-733.
    8. Wu, Zhiqiang & Yang, Wangcai & Meng, Haiyu & Zhao, Jun & Chen, Lin & Luo, Zhengyuan & Wang, Shuzhong, 2017. "Physicochemical structure and gasification reactivity of co-pyrolysis char from two kinds of coal blended with lignocellulosic biomass: Effects of the carboxymethylcellulose sodium," Applied Energy, Elsevier, vol. 207(C), pages 96-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    2. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    3. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    4. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    5. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    6. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    7. Zeng, Guang & Zhou, Anqi & Fu, Jinming & Ji, Yang, 2022. "Experimental and numerical investigations on NOx formation and reduction mechanisms of pulverized-coal stereo-staged combustion," Energy, Elsevier, vol. 261(PB).
    8. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
    9. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    10. Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
    11. Watanabe, Hiroaki & Ahn, Seongyool & Tanno, Kenji, 2017. "Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier," Energy, Elsevier, vol. 118(C), pages 181-189.
    12. Fernandez-Lopez, M. & López-González, D. & Puig-Gamero, M. & Valverde, J.L. & Sanchez-Silva, L., 2016. "CO2 gasification of dairy and swine manure: A life cycle assessment approach," Renewable Energy, Elsevier, vol. 95(C), pages 552-560.
    13. Ku, Xiaoke & Wang, Jin & Jin, Hanhui & Lin, Jianzhong, 2019. "Effects of operating conditions and reactor structure on biomass entrained-flow gasification," Renewable Energy, Elsevier, vol. 139(C), pages 781-795.
    14. Wang, Kangcheng & Zhang, Jie & Shang, Chao & Huang, Dexian, 2021. "Operation optimization of Shell coal gasification process based on convolutional neural network models," Applied Energy, Elsevier, vol. 292(C).
    15. Bai, Yonghui & Wang, Yulong & Zhu, Shenghua & Li, Fan & Xie, Kechang, 2014. "Structural features and gasification reactivity of coal chars formed in Ar and CO2 atmospheres at elevated pressures," Energy, Elsevier, vol. 74(C), pages 464-470.
    16. P, Ramakrishnan & Singh, Jagadish Kumar & Sahoo, Abanti & Mohapatra, Soumya Sanjeeb, 2023. "CFD simulation for coal gasification in fluidized bed gasifier," Energy, Elsevier, vol. 281(C).
    17. Chen, Junghui & Chang, Yu-Hsiang & Cheng, Yi-Cheng & Hsu, Chen-Kai, 2012. "Design of image-based control loops for industrial combustion processes," Applied Energy, Elsevier, vol. 94(C), pages 13-21.
    18. Rutberg, Philip G. & Kuznetsov, Vadim A. & Serba, Evgeny O. & Popov, Sergey D. & Surov, Alexander V. & Nakonechny, Ghennady V. & Nikonov, Alexey V., 2013. "Novel three-phase steam–air plasma torch for gasification of high-caloric waste," Applied Energy, Elsevier, vol. 108(C), pages 505-514.
    19. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    20. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres," Energy, Elsevier, vol. 48(1), pages 510-518.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:129:y:2014:i:c:p:299-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.