IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v95y2016icp552-560.html
   My bibliography  Save this article

CO2 gasification of dairy and swine manure: A life cycle assessment approach

Author

Listed:
  • Fernandez-Lopez, M.
  • López-González, D.
  • Puig-Gamero, M.
  • Valverde, J.L.
  • Sanchez-Silva, L.

Abstract

CO2 gasification of three different chars obtained from the pyrolysis of two dairy manure samples and a swine manure sample was evaluated. Dairy samples were firstly pretreated by anaerobic digestion process and swine sample by bio-drying process. Subsequently, manure samples were pyrolyzed between 30 °C and 980 °C obtaining a solid fuel (biochar), which was later gasified using different vol.% CO2 (15–90%) which was the gasifying agent. Gasification was conducted at 900 °C. Thermal behavior and gasification characteristics were studied by means of the thermogravimetric-mass spectrometric analysis. In this sense, the reactivity of the samples was influenced by the catalytic activity of the mineral matter contained in the remaining biomass ashes. On the other hand, the viability of the manure gasification process vs the traditional use of manure as fertilizer was studied by means of the life cycle assessment (LCA) methodology. Two different scenarios were analyzed: gasification of manure sample before anaerobic digestion (Pre) and gasification of manure after anaerobic digestion (Dig R). According to the results obtained, the gasification of char Pre was the most viable scenario from the economic and environmental viewpoints whereas the gasification of char Dig R was the best energetic option.

Suggested Citation

  • Fernandez-Lopez, M. & López-González, D. & Puig-Gamero, M. & Valverde, J.L. & Sanchez-Silva, L., 2016. "CO2 gasification of dairy and swine manure: A life cycle assessment approach," Renewable Energy, Elsevier, vol. 95(C), pages 552-560.
  • Handle: RePEc:eee:renene:v:95:y:2016:i:c:p:552-560
    DOI: 10.1016/j.renene.2016.04.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116303585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.04.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iribarren, Diego & Susmozas, Ana & Dufour, Javier, 2013. "Life-cycle assessment of Fischer–Tropsch products from biosyngas," Renewable Energy, Elsevier, vol. 59(C), pages 229-236.
    2. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    3. Zarkadas, Ioannis S. & Sofikiti, Artemis S. & Voudrias, Evangelos A. & Pilidis, Georgios A., 2015. "Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: Focussing on mixing ratios," Renewable Energy, Elsevier, vol. 80(C), pages 432-440.
    4. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    5. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    6. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    2. Fang, Yi & Li, Xian & Ascher, Simon & Li, Yize & Dai, Leilei & Ruan, Roger & You, Siming, 2023. "Life cycle assessment and cost benefit analysis of concentrated solar thermal gasification of biomass for continuous electricity generation," Energy, Elsevier, vol. 284(C).
    3. Soreanu, G. & Tomaszewicz, M. & Fernandez-Lopez, M. & Valverde, J.L. & Zuwała, J. & Sanchez-Silva, L., 2017. "CO2 gasification process performance for energetic valorization of microalgae," Energy, Elsevier, vol. 119(C), pages 37-43.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    2. Igor Donskoy & Aleksandr Kozlov, 2021. "Thermogravimetric Study of the Kinetics of the Reaction C + CO 2 under Pore-Diffusion Control," Energies, MDPI, vol. 14(7), pages 1-14, March.
    3. Soreanu, G. & Tomaszewicz, M. & Fernandez-Lopez, M. & Valverde, J.L. & Zuwała, J. & Sanchez-Silva, L., 2017. "CO2 gasification process performance for energetic valorization of microalgae," Energy, Elsevier, vol. 119(C), pages 37-43.
    4. Lopez, Gartzen & Alvarez, Jon & Amutio, Maider & Arregi, Aitor & Bilbao, Javier & Olazar, Martin, 2016. "Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor," Energy, Elsevier, vol. 107(C), pages 493-501.
    5. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    6. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    7. Borugadda, Venu Babu & Kamath, Girish & Dalai, Ajay K., 2020. "Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production," Energy, Elsevier, vol. 195(C).
    8. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Dupont, Capucine & Jacob, Sylvain & Marrakchy, Khalil Ould & Hognon, Céline & Grateau, Maguelone & Labalette, Françoise & Da Silva Perez, Denilson, 2016. "How inorganic elements of biomass influence char steam gasification kinetics," Energy, Elsevier, vol. 109(C), pages 430-435.
    10. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    11. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    12. He, Yahui & Li, Xiaofu & Meng, Li & Zhang, Wenqi & Wang, Yinfeng & Wang, Lei & Bi, Xiaotao & Zhu, Yuezhao, 2024. "Experimental investigation on high-temperature co-gasification and melting behavior of petrochemical sludge and bituminous coal in CO2 atmosphere," Energy, Elsevier, vol. 303(C).
    13. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    14. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    15. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    16. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    17. Ziębik, Andrzej & Malik, Tomasz & Liszka, Marcin, 2015. "Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification," Energy, Elsevier, vol. 92(P2), pages 179-188.
    18. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    19. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    20. Anna Trubetskaya, 2022. "Reactivity Effects of Inorganic Content in Biomass Gasification: A Review," Energies, MDPI, vol. 15(9), pages 1-36, April.

    More about this item

    Keywords

    CO2; Gasification; Manure; LCA; TGA-MS;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:95:y:2016:i:c:p:552-560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.