IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v128y2014icp230-245.html
   My bibliography  Save this article

Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS

Author

Listed:
  • Siefert, Nicholas S.
  • Chang, Brian Y.
  • Litster, Shawn

Abstract

We present exergy and economic analyses for two potential advanced coal-based power plants with CO2 capture and sequestration. Each system generates three products: electricity, carbon dioxide compressed to 15MPa, and pre-calcined feedstock for cement kilns. First, we analyzed a system that integrates a CaO-looping gasifier with a solid oxide fuel cell (SOFC), labeled here as IGFC–CCS. The SOFC is modeled based on a commercial pressurized SOFC system. Second, we analyzed a system that integrates a CaO-looping gasifier with a Brayton–Rankine combined cycle, labeled here as IGCC–CCS. The exergy analyses evaluated both the power generation/consumption and the exergy destruction in each of the major sub-systems within the power plant. The economic analyses evaluated the internal rate of return on investment (IRR), including the upfront construction costs and the yearly net revenue. Using recent capital cost estimates, we performed a parametric study of this IGFC–CCS system to determine the effect on the IRR on the four key SOFC parameters: current density, air pressure, fuel utilization, and air stoichiometric ratio. For this IGFC–CCS configuration, the calculated exergetic efficiency was 60% at the parameters values that maximized the IRR. For the IGCC–CCS system with same gasifier specifications, the efficiency was 46%; although, this configuration often achieved a higher value of IRR than the IGFC–CCS configuration, depending on the assumptions made on gas turbine and fuel cell equipment costs. We conducted a sensitivity analysis to determine how the IRR was affected by assumptions, such as capital costs and the sale price of CO2. Most importantly, we analyzed the effect of the coal gasification kinetic rate and CaO capture degradation rate on the IRR so that experimental researchers have goal posts as far as required rates for this CaO-looping process. From our sensitivity analysis, we conclude that the addition of alkali catalysts to CaO-looping gasification process can increase the IRR compared with a CaO-looping process without the addition of alkali catalysts, such as KOH.

Suggested Citation

  • Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
  • Handle: RePEc:eee:appene:v:128:y:2014:i:c:p:230-245
    DOI: 10.1016/j.apenergy.2014.04.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914004188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.04.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    2. Li, Mu & Rao, Ashok D. & Scott Samuelsen, G., 2012. "Performance and costs of advanced sustainable central power plants with CCS and H2 co-production," Applied Energy, Elsevier, vol. 91(1), pages 43-50.
    3. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    4. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    5. Johnson, Timothy L. & Keith, David W., 2004. "Fossil electricity and CO2 sequestration: how natural gas prices, initial conditions and retrofits determine the cost of controlling CO2 emissions," Energy Policy, Elsevier, vol. 32(3), pages 367-382, February.
    6. Davison, John, 2007. "Performance and costs of power plants with capture and storage of CO2," Energy, Elsevier, vol. 32(7), pages 1163-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas S. Siefert & Sarah Narburgh & Yang Chen, 2016. "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO 2 Capture," Energies, MDPI, vol. 9(9), pages 1-19, August.
    2. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    3. Ridha, Firas N. & Manovic, Vasilije & Macchi, Arturo & Anthony, Edward J., 2015. "CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents," Applied Energy, Elsevier, vol. 140(C), pages 297-303.
    4. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    5. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
    6. Mehrpooya, Mehdi & Sharifzadeh, Mohammad Mehdi Moftakhari, 2017. "Conceptual and basic design of a novel integrated cogeneration power plant energy system," Energy, Elsevier, vol. 127(C), pages 516-533.
    7. Meng, Xiuxia & Liu, Yongna & Yang, Naitao & Tan, Xiaoyao & Liu, Jian & Diniz da Costa, João C. & Liu, Shaomin, 2017. "Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production," Applied Energy, Elsevier, vol. 205(C), pages 741-748.
    8. Zhong, Dong-Liang & Wang, Jia-Le & Lu, Yi-Yu & Li, Zheng & Yan, Jin, 2016. "Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation," Energy, Elsevier, vol. 102(C), pages 621-629.
    9. Arroyave, Juan D. & Chejne, Farid & Mejía, Juan M. & Maya, Juan C., 2020. "Evaluation of CO2 production for enhanced oil recovery from four power plants," Energy, Elsevier, vol. 206(C).
    10. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    2. Pettinau, Alberto & Ferrara, Francesca & Amorino, Carlo, 2013. "Combustion vs. gasification for a demonstration CCS (carbon capture and storage) project in Italy: A techno-economic analysis," Energy, Elsevier, vol. 50(C), pages 160-169.
    3. Tola, Vittorio & Pettinau, Alberto, 2014. "Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies," Applied Energy, Elsevier, vol. 113(C), pages 1461-1474.
    4. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    5. Abadie, Luis M. & Chamorro, José M., 2008. "European CO2 prices and carbon capture investments," Energy Economics, Elsevier, vol. 30(6), pages 2992-3015, November.
    6. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Assessment of clean-coal strategies: The questionable merits of carbon capture-readiness," Energy, Elsevier, vol. 52(C), pages 27-36.
    7. Bistline, John E. & Rai, Varun, 2010. "The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the U.S. power sector," Energy Policy, Elsevier, vol. 38(2), pages 1177-1191, February.
    8. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    9. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    10. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    11. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    12. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    13. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    14. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    15. Wu, Zeyang & Liu, Sen & Gao, Hongxia & Yin, Qiqi & Liang, Zhiwu, 2019. "A study of structure-activity relationships of aqueous diamine solutions with low heat of regeneration for post-combustion CO2 capture," Energy, Elsevier, vol. 167(C), pages 359-368.
    16. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Optimal Power Generation Investment: Impact of Technology Choices and Existing Portfolios for Deploying Low-Carbon Coal Technologies," FCN Working Papers 12/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    17. Xi Liang & Hengwei Liu & David Reiner, 2014. "Strategies for Financing Large-scale Carbon Capture and Storage Power Plants in China," Cambridge Working Papers in Economics 1430, Faculty of Economics, University of Cambridge.
    18. Mayr, Bernhard & Prieler, Rene & Demuth, Martin & Hochenauer, Christoph, 2015. "The usability and limits of the steady flamelet approach in oxy-fuel combustions," Energy, Elsevier, vol. 90(P2), pages 1478-1489.
    19. Pettinau, Alberto & Ferrara, Francesca & Tola, Vittorio & Cau, Giorgio, 2017. "Techno-economic comparison between different technologies for CO2-free power generation from coal," Applied Energy, Elsevier, vol. 193(C), pages 426-439.
    20. Puig-Arnavat, Maria & Søgaard, Martin & Hjuler, Klaus & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk & Hendriksen, Peter Vang, 2015. "Integration of oxygen membranes for oxygen production in cement plants," Energy, Elsevier, vol. 91(C), pages 852-865.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:128:y:2014:i:c:p:230-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.