IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v123y2014icp13-18.html
   My bibliography  Save this article

Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells

Author

Listed:
  • Li, Xiaojing
  • Wang, Xin
  • Zhang, Yueyong
  • Ding, Ning
  • Zhou, Qixing

Abstract

Stainless steel mesh (SSM) with four opening sizes (20–80M) were investigated as matrixes of activated carbon air–cathodes in microbial fuel cells (MFCs). The highest power density of 2151±109mWm−2 (at 5.54±0.14Am−2) was obtained using 40M, with a value 45% higher than 1485±18mWm−2 of 80M. The trend of linear sweep voltammetries were in accordant with power output over a cathodic potential range from −0.2 to 0V. The differences in performance were attributed to the internal resistances. Charge transfer resistance (Rct) was the dominant internal resistance in most of air–cathodes, with the lowest value of 2Ω in 40M. Density of metal mesh exhibited a more significant correlationship with maximum power densities (R2=0.9222) compared to opening size (R2=0.7068), demonstrated that the density of metal current collector was vital to the performance of cathodes.

Suggested Citation

  • Li, Xiaojing & Wang, Xin & Zhang, Yueyong & Ding, Ning & Zhou, Qixing, 2014. "Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 123(C), pages 13-18.
  • Handle: RePEc:eee:appene:v:123:y:2014:i:c:p:13-18
    DOI: 10.1016/j.apenergy.2014.02.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sevda, Surajbhan & Dominguez-Benetton, Xochitl & Vanbroekhoven, Karolien & De Wever, Heleen & Sreekrishnan, T.R. & Pant, Deepak, 2013. "High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 194-206.
    2. Ghasemi, Mostafa & Ismail, Manal & Kamarudin, Siti Kartom & Saeedfar, Kasra & Daud, Wan Ramli Wan & Hassan, Sedky H.A. & Heng, Lee Yook & Alam, Javed & Oh, Sang-Eun, 2013. "Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1050-1056.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    2. Liang, Peng & Zhang, Changyong & Jiang, Yong & Bian, Yanhong & Zhang, Helan & Sun, Xueliang & Yang, Xufei & Zhang, Xiaoyuan & Huang, Xia, 2017. "Performance enhancement of microbial fuel cell by applying transient-state regulation," Applied Energy, Elsevier, vol. 185(P1), pages 582-588.
    3. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    4. Song, Bing-Ye & He, Yan & He, Ya-Ling & Huang, Dong & Zhang, Yu-Wen, 2019. "Experimental study on anode components optimization for direct glucose fuel cells," Energy, Elsevier, vol. 176(C), pages 15-22.
    5. Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
    6. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    7. Gajda, Iwona & Greenman, John & Santoro, Carlo & Serov, Alexey & Melhuish, Chris & Atanassov, Plamen & Ieropoulos, Ioannis A., 2018. "Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode," Energy, Elsevier, vol. 144(C), pages 1073-1079.
    8. Liu, Shu-Hui & Lai, Yu-Chuan & Lin, Chi-Wen, 2019. "Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions," Applied Energy, Elsevier, vol. 233, pages 922-929.
    9. Xiaojing Li & Yue Li & Lixia Zhao & Yang Sun & Xiaolin Zhang & Xiaodong Chen & Liping Weng & Yongtao Li, 2019. "Efficient Removal of Butachlor and Change in Microbial Community Structure in Single-Chamber Microbial Fuel Cells," IJERPH, MDPI, vol. 16(20), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leong, Jun Xing & Daud, Wan Ramli Wan & Ghasemi, Mostafa & Liew, Kien Ben & Ismail, Manal, 2013. "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 575-587.
    2. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    3. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    4. Young Eun Song & Hitesh C. Boghani & Hong Suck Kim & Byung Goon Kim & Taeho Lee & Byong-Hun Jeon & Giuliano C. Premier & Jung Rae Kim, 2017. "Electricity Production by the Application of a Low Voltage DC-DC Boost Converter to a Continuously Operating Flat-Plate Microbial Fuel Cell," Energies, MDPI, vol. 10(5), pages 1-16, April.
    5. Adrián Hernández-Fernández & Eduardo Iniesta-López & Yolanda Garrido & Ioannis A. Ieropoulos & Francisco J. Hernández-Fernández, 2023. "Microbial Fuel Cell Using a Novel Ionic-Liquid-Type Membrane-Cathode Assembly with Heterotrophic Anodic Denitrification for Slurry Treatment," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    6. Kim, Jung Hwan & Park, I Seul & Park, Joo Yang, 2015. "Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation," Applied Energy, Elsevier, vol. 160(C), pages 18-27.
    7. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    8. Zhai, Pei & Isaacs, Jacqueline A. & Eckelman, Matthew J., 2016. "Net energy benefits of carbon nanotube applications," Applied Energy, Elsevier, vol. 173(C), pages 624-634.
    9. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    10. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    11. Jianzhong, Liu & Ruikun, Wang & Jianfei, Xi & Junhu, Zhou & Kefa, Cen, 2014. "Pilot-scale investigation on slurrying, combustion, and slagging characteristics of coal slurry fuel prepared using industrial wasteliquid," Applied Energy, Elsevier, vol. 115(C), pages 309-319.
    12. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    13. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
    14. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    15. Amen, Mohamed T. & Barakat, Nasser A.M. & Jamal, Mohammad Abu Hena Mostafa & Hong, Seong-Tshool & Mohamed, Ibrahim M.A. & Salama, Ali, 2018. "Anolyte in-situ functionalized carbon nanotubes electrons transport network as novel strategy for enhanced performance microbial fuel cells," Applied Energy, Elsevier, vol. 228(C), pages 167-175.
    16. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    17. ElMekawy, Ahmed & Hegab, Hanaa M. & Vanbroekhoven, Karolien & Pant, Deepak, 2014. "Techno-productive potential of photosynthetic microbial fuel cells through different configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 617-627.
    18. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    19. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    20. Wu, Yi-cheng & Wang, Ze-jie & Zheng, Yue & Xiao, Yong & Yang, Zhao-hui & Zhao, Feng, 2014. "Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism," Applied Energy, Elsevier, vol. 116(C), pages 86-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:123:y:2014:i:c:p:13-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.