IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp199-206.html
   My bibliography  Save this article

Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells

Author

Listed:
  • Zhou, Lean
  • Liao, Chengmei
  • Li, Tian
  • An, Jingkun
  • Du, Qing
  • Wan, Lili
  • Li, Nan
  • Pan, Xiaoqiang
  • Wang, Xin

Abstract

The activated carbon air-cathode is promising but usually be rapidly contaminated in wastewater due to the salt accumulation and biofilm formation on the catalysis layers in microbial fuel cells (MFCs). For the first time, the half-wave rectified alternating fields (AC+) was demonstrated as a novel, efficient and energy-saving way to remove ions from porous surface and regenerate this cathode. 1.2 V AC+ treatment recovered the power generation by 50% and 43% in 12 h when the cathodes were operated in MFCs for 20 and 30 d, comparing to 12–15% recoveries of direct current (DC) treatment, but the energy needed of AC+ was only 1/4 of DC. Pores in the catalyst layer were substantially cleaned after AC+ treatment, leading to a 43% increase in cathodic oxygen diffusion coefficient. Bacteria attached to the cathode were simultaneously inactivated (65 ± 1% dead). The biofilm on cathodes was expanded from 34 ± 1 to 51 ± 1 µm by salts released from the catalyst layer. These findings provide a novel energy-saving technology to prolong the performance of activated carbon air-cathodes in MFCs, which can be also used to remove ions and biofouling from the porous surface.

Suggested Citation

  • Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:199-206
    DOI: 10.1016/j.apenergy.2018.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xiaojing & Wang, Xin & Zhang, Yueyong & Ding, Ning & Zhou, Qixing, 2014. "Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 123(C), pages 13-18.
    2. Alatraktchi, Fatima AlZahra’a & Zhang, Yifeng & Angelidaki, Irini, 2014. "Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community," Applied Energy, Elsevier, vol. 116(C), pages 216-222.
    3. Chong Liu & Po-Chun Hsu & Jin Xie & Jie Zhao & Tong Wu & Haotian Wang & Wei Liu & Jinsong Zhang & Steven Chu & Yi Cui, 2017. "A half-wave rectified alternating current electrochemical method for uranium extraction from seawater," Nature Energy, Nature, vol. 2(4), pages 1-8, April.
    4. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    5. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    6. Chen, Shuiliang & Patil, Sunil A. & Schröder, Uwe, 2018. "A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 211(C), pages 1089-1094.
    7. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    8. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    2. Roman Lepikash & Daria Lavrova & Devard Stom & Valery Meshalkin & Olga Ponamoreva & Sergey Alferov, 2024. "State of the Art and Environmental Aspects of Plant Microbial Fuel Cells’ Application," Energies, MDPI, vol. 17(3), pages 1-24, February.
    3. Littfinski, Tobias & Stricker, Max & Nettmann, Edith & Gehring, Tito & Hiegemann, Heinz & Krimmler, Stefan & Lübken, Manfred & Pant, Deepak & Wichern, Marc, 2022. "A generalized whole-cell model for wastewater-fed microbial fuel cells," Applied Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    2. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    3. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    4. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    5. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    6. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Kumar, Ravinder & Singh, Lakhveer & Zularisam, A.W., 2016. "Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1322-1336.
    8. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    9. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    10. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    11. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    12. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    13. Asiah Sukri & Raihan Othman & Firdaus Abd-Wahab & Noraini M. Noor, 2021. "Self-Sustaining Bioelectrochemical Cell from Fungal Degradation of Lignin-Rich Agrowaste," Energies, MDPI, vol. 14(8), pages 1-11, April.
    14. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    15. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    16. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    17. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    18. Gajda, Iwona & Greenman, John & Santoro, Carlo & Serov, Alexey & Melhuish, Chris & Atanassov, Plamen & Ieropoulos, Ioannis A., 2018. "Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode," Energy, Elsevier, vol. 144(C), pages 1073-1079.
    19. Olda Alexia Cárdenas Cortez & José de Jesús Pérez Bueno & Yolanda Casados Mexicano & Maria Luisa Mendoza López & Carlos Hernández Rodríguez & Alejandra Xochitl Maldonado Pérez & David Cruz Alejandre &, 2022. "CoO, Cu, and Ag Nanoparticles on Silicon Nanowires with Photocatalytic Activity for the Degradation of Dyes," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    20. Byunghui Kim & Kuisoon Kim & Seokho Kim, 2020. "Numerical Study on Novel Design for Compact Parallel-Flow Heat Exchanger with Manifolds to Improve Flow Characteristics," Energies, MDPI, vol. 13(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:199-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.