IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp199-206.html
   My bibliography  Save this article

Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells

Author

Listed:
  • Zhou, Lean
  • Liao, Chengmei
  • Li, Tian
  • An, Jingkun
  • Du, Qing
  • Wan, Lili
  • Li, Nan
  • Pan, Xiaoqiang
  • Wang, Xin

Abstract

The activated carbon air-cathode is promising but usually be rapidly contaminated in wastewater due to the salt accumulation and biofilm formation on the catalysis layers in microbial fuel cells (MFCs). For the first time, the half-wave rectified alternating fields (AC+) was demonstrated as a novel, efficient and energy-saving way to remove ions from porous surface and regenerate this cathode. 1.2 V AC+ treatment recovered the power generation by 50% and 43% in 12 h when the cathodes were operated in MFCs for 20 and 30 d, comparing to 12–15% recoveries of direct current (DC) treatment, but the energy needed of AC+ was only 1/4 of DC. Pores in the catalyst layer were substantially cleaned after AC+ treatment, leading to a 43% increase in cathodic oxygen diffusion coefficient. Bacteria attached to the cathode were simultaneously inactivated (65 ± 1% dead). The biofilm on cathodes was expanded from 34 ± 1 to 51 ± 1 µm by salts released from the catalyst layer. These findings provide a novel energy-saving technology to prolong the performance of activated carbon air-cathodes in MFCs, which can be also used to remove ions and biofouling from the porous surface.

Suggested Citation

  • Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:199-206
    DOI: 10.1016/j.apenergy.2018.03.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
    2. Li, Xiaojing & Wang, Xin & Zhang, Yueyong & Ding, Ning & Zhou, Qixing, 2014. "Opening size optimization of metal matrix in rolling-pressed activated carbon air–cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 123(C), pages 13-18.
    3. Alatraktchi, Fatima AlZahra’a & Zhang, Yifeng & Angelidaki, Irini, 2014. "Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community," Applied Energy, Elsevier, vol. 116(C), pages 216-222.
    4. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    5. Chong Liu & Po-Chun Hsu & Jin Xie & Jie Zhao & Tong Wu & Haotian Wang & Wei Liu & Jinsong Zhang & Steven Chu & Yi Cui, 2017. "A half-wave rectified alternating current electrochemical method for uranium extraction from seawater," Nature Energy, Nature, vol. 2(4), pages 1-8, April.
    6. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    7. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    8. Chen, Shuiliang & Patil, Sunil A. & Schröder, Uwe, 2018. "A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells," Applied Energy, Elsevier, vol. 211(C), pages 1089-1094.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    2. Roman Lepikash & Daria Lavrova & Devard Stom & Valery Meshalkin & Olga Ponamoreva & Sergey Alferov, 2024. "State of the Art and Environmental Aspects of Plant Microbial Fuel Cells’ Application," Energies, MDPI, vol. 17(3), pages 1-24, February.
    3. Littfinski, Tobias & Stricker, Max & Nettmann, Edith & Gehring, Tito & Hiegemann, Heinz & Krimmler, Stefan & Lübken, Manfred & Pant, Deepak & Wichern, Marc, 2022. "A generalized whole-cell model for wastewater-fed microbial fuel cells," Applied Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    2. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    3. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    4. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    5. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    6. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    7. Kumar, Ravinder & Singh, Lakhveer & Zularisam, A.W., 2016. "Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1322-1336.
    8. He, Yuting & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Pang, Yuan & Liao, Qiang, 2024. "Nano zero-valent iron functioned 3D printing graphene aerogel electrode for efficient solar-driven biocatalytic methane production," Renewable Energy, Elsevier, vol. 224(C).
    9. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    10. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    11. Wang, Aoyu & Yuan, Wei & Huang, Shimin & Tang, Yong & Chen, Yu, 2017. "Structural effects of expanded metal mesh used as a flow field for a passive direct methanol fuel cell," Applied Energy, Elsevier, vol. 208(C), pages 184-194.
    12. Li, Wenkai & Zhang, Qinglei & Wang, Chao & Yan, Xiaohui & Shen, Shuiyun & Xia, Guofeng & Zhu, Fengjuan & Zhang, Junliang, 2017. "Experimental and numerical analysis of a three-dimensional flow field for PEMFCs," Applied Energy, Elsevier, vol. 195(C), pages 278-288.
    13. Sekar, Aiswarya Devi & Jayabalan, Tamilmani & Muthukumar, Harshiny & Chandrasekaran, Nivedhini Iswarya & Mohamed, Samsudeen Naina & Matheswaran, Manickam, 2019. "Enhancing power generation and treatment of dairy waste water in microbial fuel cell using Cu-doped iron oxide nanoparticles decorated anode," Energy, Elsevier, vol. 172(C), pages 173-180.
    14. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    15. Cai, Weiwei & Zhang, Zhaojing & Ren, Ge & Shen, Qiuxuan & Hou, Yanan & Ma, Anzhou & Deng, Ye & Wang, Aijie & Liu, Wenzong, 2016. "Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells," Applied Energy, Elsevier, vol. 183(C), pages 1133-1141.
    16. Lai, Chi-Yung & Wu, Chih-Hung & Meng, Chui-Ting & Lin, Chi-Wen, 2017. "Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode," Applied Energy, Elsevier, vol. 188(C), pages 392-398.
    17. Baik, Kyung Don & Seo, Il Sung, 2018. "Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 212(C), pages 333-339.
    18. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    19. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    20. Qiao, Jia Nan & Guo, Hang & Ye, Fang & Chen, Hao, 2024. "A nonlinear contraction channel design inspired by typical mathematical curves: Boosting net power and water discharge of PEM fuel cells," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:199-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.