IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp382-389.html
   My bibliography  Save this article

Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell

Author

Listed:
  • Han, He-Xing
  • Shi, Chen
  • Yuan, Li
  • Sheng, Guo-Ping

Abstract

It is of significant importance to develop renewable and environmentally friendly technologies for sustainable wastewater treatment and energy recovery. Microbial fuel cell (MFC), a bioelectrochemical system, has attracted more and more attention because it can treat wastewater and harvest energy simultaneously. However, the practical applications of MFC are often limited by its high cathodic overpotential, relatively slow pollutant degradation rate, and low power output. In this study, a photoelectrocatalytic microbial fuel cell (photo-MFC), consisting of a Pd nanoparticle-modified p-type Si nanowire photocathode and an electricigen-colonized bioanode, was used to degrade a model azo dye, methyl orange (MO), and to generate electricity simultaneously. Results show that the introduction of photocathode enhanced the MO reduction reactivity through reducing the thermodynamic barrier and overpotential of the reduction reaction. Under visible-light illumination, the photo-MFC presented a MO removal efficiency of 84.5% and maximum output power density of 0.119W/m2 within 36h, which were double of those of the conventional MFC with a carbon paper cathode. This observation could be attributed to the synergistic effect of photocathode and bioanode in photo-MFC, which significantly enhanced MO reduction and electricity generation. The new findings reported in this work could provide a new technique for wastewater treatment, and spur interest in using the photo-MFC for treating azo dye wastewater and harvesting energy simultaneously.

Suggested Citation

  • Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:382-389
    DOI: 10.1016/j.apenergy.2017.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
    2. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    3. Jannelli, Nicole & Anna Nastro, Rosa & Cigolotti, Viviana & Minutillo, Mariagiovanna & Falcucci, Giacomo, 2017. "Low pH, high salinity: Too much for microbial fuel cells?," Applied Energy, Elsevier, vol. 192(C), pages 543-550.
    4. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    5. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    6. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    7. Wetser, Koen & Sudirjo, Emilius & Buisman, Cees J.N. & Strik, David P.B.T.B., 2015. "Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode," Applied Energy, Elsevier, vol. 137(C), pages 151-157.
    8. Ghasemi, Mostafa & Ismail, Manal & Kamarudin, Siti Kartom & Saeedfar, Kasra & Daud, Wan Ramli Wan & Hassan, Sedky H.A. & Heng, Lee Yook & Alam, Javed & Oh, Sang-Eun, 2013. "Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1050-1056.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    2. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    3. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    4. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    5. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    6. Olda Alexia Cárdenas Cortez & José de Jesús Pérez Bueno & Yolanda Casados Mexicano & Maria Luisa Mendoza López & Carlos Hernández Rodríguez & Alejandra Xochitl Maldonado Pérez & David Cruz Alejandre &, 2022. "CoO, Cu, and Ag Nanoparticles on Silicon Nanowires with Photocatalytic Activity for the Degradation of Dyes," Sustainability, MDPI, vol. 14(20), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    2. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    3. Kim, Jung Hwan & Park, I Seul & Park, Joo Yang, 2015. "Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation," Applied Energy, Elsevier, vol. 160(C), pages 18-27.
    4. Amen, Mohamed T. & Barakat, Nasser A.M. & Jamal, Mohammad Abu Hena Mostafa & Hong, Seong-Tshool & Mohamed, Ibrahim M.A. & Salama, Ali, 2018. "Anolyte in-situ functionalized carbon nanotubes electrons transport network as novel strategy for enhanced performance microbial fuel cells," Applied Energy, Elsevier, vol. 228(C), pages 167-175.
    5. Walter, Xavier Alexis & Stinchcombe, Andrew & Greenman, John & Ieropoulos, Ioannis, 2017. "Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging," Applied Energy, Elsevier, vol. 192(C), pages 575-581.
    6. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    7. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    8. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    9. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Apollon, Wilgince & Kamaraj, Sathish-Kumar & Silos-Espino, Héctor & Perales-Segovia, Catarino & Valera-Montero, Luis L. & Maldonado-Ruelas, Víctor A. & Vázquez-Gutiérrez, Marco A. & Ortiz-Medina, Raúl, 2020. "Impact of Opuntia species plant bio-battery in a semi-arid environment: Demonstration of their applications," Applied Energy, Elsevier, vol. 279(C).
    11. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    12. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    13. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    14. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    15. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    16. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    17. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    18. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    19. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    20. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:382-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.