IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v123y2014icp121-128.html
   My bibliography  Save this article

Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode

Author

Listed:
  • Lee, Joo Seong
  • Park, Honghee
  • Kim, Yongchan

Abstract

The objective of this study is to compare the transient performance characteristics between a ground-source heat pump (GSHP) and a hybrid ground-source heat pump (HGSHP), accounting for the degradation of the ground thermal condition during long-term operation. A heat storage bath for the ground heat exchanger (GHE) was adopted to simulate the transient characteristics of the ground thermal condition. In transient state, the performances of the HGSHP and GSHP were measured by changing the fluid flow rate (FFR) through the supplementary plate heat exchanger (SPHE) and the set-point temperature of the hybrid operation. The optimum FFR and the optimum set-point temperature of the HGSHP were determined as 8kgmin−1 and 30°C, respectively. At the optimized conditions, the average COP of the HGSHP increased by 7.2% compared with that of the GSHP.

Suggested Citation

  • Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
  • Handle: RePEc:eee:appene:v:123:y:2014:i:c:p:121-128
    DOI: 10.1016/j.apenergy.2014.02.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    2. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    3. Chen, Xi & Yang, Hongxing, 2012. "Performance analysis of a proposed solar assisted ground coupled heat pump system," Applied Energy, Elsevier, vol. 97(C), pages 888-896.
    4. Florides, Georgios & Kalogirou, Soteris, 2007. "Ground heat exchangers—A review of systems, models and applications," Renewable Energy, Elsevier, vol. 32(15), pages 2461-2478.
    5. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    6. Man, Yi & Yang, Hongxing & Wang, Jinggang, 2010. "Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2826-2833, September.
    7. Sagia, Z. & Rakopoulos, C. & Kakaras, E., 2012. "Cooling dominated Hybrid Ground Source Heat Pump System application," Applied Energy, Elsevier, vol. 94(C), pages 41-47.
    8. Man, Yi & Yang, Hongxing & Spitler, Jeffrey D. & Fang, Zhaohong, 2011. "Feasibility study on novel hybrid ground coupled heat pump system with nocturnal cooling radiator for cooling load dominated buildings," Applied Energy, Elsevier, vol. 88(11), pages 4160-4171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    2. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    3. Bozkaya, Basar & Zeiler, Wim, 2020. "The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system," Renewable Energy, Elsevier, vol. 146(C), pages 1932-1942.
    4. Lee, Minwoo & Lee, Dongchan & Park, Myeong Hyeon & Kang, Yong Tae & Kim, Yongchan, 2022. "Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas," Energy, Elsevier, vol. 240(C).
    5. Xie, Yiwei & Hu, Pingfang & Peng, Donggen & Zhu, Na & Lei, Fei, 2023. "Development of a group control strategy based on multi-step load forecasting and its application in hybrid ground source heat pump," Energy, Elsevier, vol. 273(C).
    6. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    7. Weibo Yang & Binbin Yang & Rui Xu, 2018. "Experimental Study on the Heat Release Operational Characteristics of a Soil Coupled Ground Heat Exchanger with Assisted Cooling Tower," Energies, MDPI, vol. 11(1), pages 1-17, January.
    8. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    9. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    10. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).
    11. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    2. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    3. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    4. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    5. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    6. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.
    7. Liu, Y. & Qin, X.S. & Chiew, Y.M., 2013. "Investigation on potential applicability of subsurface cooling in Singapore," Applied Energy, Elsevier, vol. 103(C), pages 197-206.
    8. Gang, Wenjie & Wang, Jinbo, 2013. "Predictive ANN models of ground heat exchanger for the control of hybrid ground source heat pump systems," Applied Energy, Elsevier, vol. 112(C), pages 1146-1153.
    9. Bansal, Vikas & Misra, Rohit & Agarwal, Ghanshyam Das & Mathur, Jyotirmay, 2013. "‘Derating Factor’ new concept for evaluating thermal performance of earth air tunnel heat exchanger: A transient CFD analysis," Applied Energy, Elsevier, vol. 102(C), pages 418-426.
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    11. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    12. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    13. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    14. Ruiz-Calvo, F. & De Rosa, M. & Acuña, J. & Corberán, J.M. & Montagud, C., 2015. "Experimental validation of a short-term Borehole-to-Ground (B2G) dynamic model," Applied Energy, Elsevier, vol. 140(C), pages 210-223.
    15. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    16. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    17. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    18. Soni, Suresh Kumar & Pandey, Mukesh & Bartaria, Vishvendra Nath, 2015. "Ground coupled heat exchangers: A review and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 83-92.
    19. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    20. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:123:y:2014:i:c:p:121-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.