IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v97y2012icp888-896.html
   My bibliography  Save this article

Performance analysis of a proposed solar assisted ground coupled heat pump system

Author

Listed:
  • Chen, Xi
  • Yang, Hongxing

Abstract

This paper presents the numerical simulation of a solar assisted ground coupled heat pump (SAGCHP) system which can provide both space heating and domestic hot water (DHW). The optimization process is completed on the TRNSYS based platform by simulating the influence of solar collector area on the total borehole length and system performance. Simulations are also carried out under different meteorological conditions to explore the applicability of the proposed SAGCHP system in northern China. The simulating results show that the optimized system under the specified load conditions has a collector area of 40m2 and a borehole length of 264m. The annual total heat extraction plus 75% of the hot water requirement can be provided by solar energy in the optimized design. Furthermore, the energy balance of the optimized design is confirmed with a minor difference of 0.75%, and the system is proved more efficient and economical for its application in Beijing area.

Suggested Citation

  • Chen, Xi & Yang, Hongxing, 2012. "Performance analysis of a proposed solar assisted ground coupled heat pump system," Applied Energy, Elsevier, vol. 97(C), pages 888-896.
  • Handle: RePEc:eee:appene:v:97:y:2012:i:c:p:888-896
    DOI: 10.1016/j.apenergy.2011.11.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ucar, Aynur & Inalli, Mustafa, 2008. "Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating," Renewable Energy, Elsevier, vol. 33(12), pages 2532-2539.
    2. Ozyurt, Omer & Ekinci, Dundar Arif, 2011. "Experimental study of vertical ground-source heat pump performance evaluation for cold climate in Turkey," Applied Energy, Elsevier, vol. 88(4), pages 1257-1265, April.
    3. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    4. Ucar, A. & Inalli, M., 2005. "Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey," Renewable Energy, Elsevier, vol. 30(7), pages 1005-1019.
    5. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    6. Man, Yi & Yang, Hongxing & Wang, Jinggang, 2010. "Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2826-2833, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosiek, S. & Batlles, F.J., 2012. "Shallow geothermal energy applied to a solar-assisted air-conditioning system in southern Spain: Two-year experience," Applied Energy, Elsevier, vol. 100(C), pages 267-276.
    2. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    3. Li, Min & Lai, Alvin C.K., 2012. "Heat-source solutions to heat conduction in anisotropic media with application to pile and borehole ground heat exchangers," Applied Energy, Elsevier, vol. 96(C), pages 451-458.
    4. Wu, Wei & You, Tian & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Simulation of a combined heating, cooling and domestic hot water system based on ground source absorption heat pump," Applied Energy, Elsevier, vol. 126(C), pages 113-122.
    5. Bagdanavicius, Audrius & Jenkins, Nick, 2013. "Power requirements of ground source heat pumps in a residential area," Applied Energy, Elsevier, vol. 102(C), pages 591-600.
    6. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    7. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    8. Elisa Moretti & Emanuele Bonamente & Cinzia Buratti & Franco Cotana, 2013. "Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings," Energies, MDPI, vol. 6(10), pages 1-16, October.
    9. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    10. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    11. Park, Honghee & Lee, Joo Seoung & Kim, Wonuk & Kim, Yongchan, 2013. "The cooling seasonal performance factor of a hybrid ground-source heat pump with parallel and serial configurations," Applied Energy, Elsevier, vol. 102(C), pages 877-884.
    12. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    13. Gang, Wenjie & Wang, Jinbo & Wang, Shengwei, 2014. "Performance analysis of hybrid ground source heat pump systems based on ANN predictive control," Applied Energy, Elsevier, vol. 136(C), pages 1138-1144.
    14. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    15. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    16. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    17. Michopoulos, A. & Papakostas, K.T. & Kyriakis, N., 2011. "Potential of autonomous ground-coupled heat pump system installations in Greece," Applied Energy, Elsevier, vol. 88(6), pages 2122-2129, June.
    18. Dusseault, Bernard & Pasquier, Philippe, 2021. "Usage of the net present value-at-risk to design ground-coupled heat pump systems under uncertain scenarios," Renewable Energy, Elsevier, vol. 173(C), pages 953-971.
    19. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    20. Luo, Jin & Zhao, Haifeng & Jia, Jia & Xiang, Wei & Rohn, Joachim & Blum, Philipp, 2017. "Study on operation management of borehole heat exchangers for a large-scale hybrid ground source heat pump system in China," Energy, Elsevier, vol. 123(C), pages 340-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:97:y:2012:i:c:p:888-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.