IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1932-1942.html
   My bibliography  Save this article

The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system

Author

Listed:
  • Bozkaya, Basar
  • Zeiler, Wim

Abstract

Aquifer thermal energy storage (ATES) systems, which utilize underground water for heat exchange with buildings, have been proven to be an excellent heating and cooling source. However, their operation is limited by strict regulations, one of which is the requirement for balance in the amount of heat transfer to the ground. Systems are highly exposed to cooling dominated loads, which results in excess heat injection into the ground. Commonly, an air handling unit is utilized to expel heat from the ATES system. This is known as the direct compensation (DC) method. In this study, an alternative approach that uses night ventilation (NV) was presented as a promising solution in combination with DC. Night ventilation can be used to decrease the cooling load and by using NV the system can avoid excess heat injection into the ground. The DC method was combined with NV under various control settings and compared with a system that uses only DC. The optimal operational setting between DC and NV operation was determined based on simulating a case study building. The study determined that the energy performance of the system can be improved by 16% by optimally adapting NV to the DC method.

Suggested Citation

  • Bozkaya, Basar & Zeiler, Wim, 2020. "The energy efficient use of an air handling unit for balancing an aquifer thermal energy storage system," Renewable Energy, Elsevier, vol. 146(C), pages 1932-1942.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1932-1942
    DOI: 10.1016/j.renene.2019.07.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119311310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Félix Ruiz-Calvo & Carla Montagud & Antonio Cazorla-Marín & José M. Corberán, 2017. "Development and Experimental Validation of a TRNSYS Dynamic Tool for Design and Energy Optimization of Ground Source Heat Pump Systems," Energies, MDPI, vol. 10(10), pages 1-21, September.
    2. Kranz, Stefan & Frick, Stephanie, 2013. "Efficient cooling energy supply with aquifer thermal energy storages," Applied Energy, Elsevier, vol. 109(C), pages 321-327.
    3. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    4. Lee, Joo Seong & Park, Honghee & Kim, Yongchan, 2014. "Transient performance characteristics of a hybrid ground-source heat pump in the cooling mode," Applied Energy, Elsevier, vol. 123(C), pages 121-128.
    5. Kolokotroni, M. & Aronis, A., 1999. "Cooling-energy reduction in air-conditioned offices by using night ventilation," Applied Energy, Elsevier, vol. 63(4), pages 241-253, August.
    6. Bloemendal, Martin & Olsthoorn, Theo & Boons, Frank, 2014. "How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage," Energy Policy, Elsevier, vol. 66(C), pages 104-114.
    7. Shaviv, Edna & Yezioro, Abraham & Capeluto, Isaac G, 2001. "Thermal mass and night ventilation as passive cooling design strategy," Renewable Energy, Elsevier, vol. 24(3), pages 445-452.
    8. Man, Yi & Yang, Hongxing & Wang, Jinggang, 2010. "Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong," Applied Energy, Elsevier, vol. 87(9), pages 2826-2833, September.
    9. Pärisch, Peter & Mercker, Oliver & Oberdorfer, Phillip & Bertram, Erik & Tepe, Rainer & Rockendorf, Gunter, 2015. "Short-term experiments with borehole heat exchangers and model validation in TRNSYS," Renewable Energy, Elsevier, vol. 74(C), pages 471-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Lopes & João Silva & Senhorinha Teixeira & José Teixeira, 2020. "Numerical Modeling and Optimization of an Air Handling Unit," Energies, MDPI, vol. 14(1), pages 1-16, December.
    2. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    3. Yang, Junqin & Zhao, Hui & Li, Chenchen & Li, Xiuwei, 2021. "A direct energy reuse strategy for absorption air-conditioning system based on electrode regeneration method," Renewable Energy, Elsevier, vol. 168(C), pages 353-364.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Guobing & Yang, Yongping & Wang, Xin & Zhou, Shaoxiang, 2009. "Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation," Applied Energy, Elsevier, vol. 86(1), pages 52-59, January.
    2. Jewon Oh & Daisuke Sumiyoshi & Masatoshi Nishioka & Hyunbae Kim, 2021. "Efficient Operation Method of Aquifer Thermal Energy Storage System Using Demand Response," Energies, MDPI, vol. 14(11), pages 1-18, May.
    3. Liu, Zhijian & Li, Yuanwei & Xu, Wei & Yin, Hang & Gao, Jun & Jin, Guangya & Lun, Liyong & Jin, Guohui, 2019. "Performance and feasibility study of hybrid ground source heat pump system assisted with cooling tower for one office building based on one Shanghai case," Energy, Elsevier, vol. 173(C), pages 28-37.
    4. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Kuczyński, Tadeusz & Staszczuk, Anna, 2023. "Experimental study of the thermal behavior of PCM and heavy building envelope structures during summer in a temperate climate," Energy, Elsevier, vol. 279(C).
    6. Ramponi, Rubina & Angelotti, Adriana & Blocken, Bert, 2014. "Energy saving potential of night ventilation: Sensitivity to pressure coefficients for different European climates," Applied Energy, Elsevier, vol. 123(C), pages 185-195.
    7. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    8. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    9. De Schepper, Guillaume & Paulus, Claire & Bolly, Pierre-Yves & Hermans, Thomas & Lesparre, Nolwenn & Robert, Tanguy, 2019. "Assessment of short-term aquifer thermal energy storage for demand-side management perspectives: Experimental and numerical developments," Applied Energy, Elsevier, vol. 242(C), pages 534-546.
    10. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    11. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
    12. Guo, Rui & Gao, Yafeng & Zhuang, Chaoqun & Heiselberg, Per & Levinson, Ronnen & Zhao, Xia & Shi, Dachuan, 2020. "Optimization of cool roof and night ventilation in office buildings: A case study in Xiamen, China," Renewable Energy, Elsevier, vol. 147(P1), pages 2279-2294.
    13. Lee, Joo Seong & Song, Kang Sub & Ahn, Jae Hwan & Kim, Yongchan, 2015. "Comparison on the transient cooling performances of hybrid ground-source heat pumps with various flow loop configurations," Energy, Elsevier, vol. 82(C), pages 678-685.
    14. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    15. Artmann, N. & Manz, H. & Heiselberg, P., 2008. "Parameter study on performance of building cooling by night-time ventilation," Renewable Energy, Elsevier, vol. 33(12), pages 2589-2598.
    16. Enteria, Napoleon & Mizutani, Kunio, 2011. "The role of the thermally activated desiccant cooling technologies in the issue of energy and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 2095-2122, May.
    17. Solgi, Ebrahim & Fayaz, Rima & Kari, Behrouz Mohammad, 2016. "Cooling load reduction in office buildings of hot-arid climate, combining phase change materials and night purge ventilation," Renewable Energy, Elsevier, vol. 85(C), pages 725-731.
    18. Bloemendal, Martin & Jaxa-Rozen, Marc & Olsthoorn, Theo, 2018. "Methods for planning of ATES systems," Applied Energy, Elsevier, vol. 216(C), pages 534-557.
    19. Weibo Yang & Binbin Yang & Rui Xu, 2018. "Experimental Study on the Heat Release Operational Characteristics of a Soil Coupled Ground Heat Exchanger with Assisted Cooling Tower," Energies, MDPI, vol. 11(1), pages 1-17, January.
    20. Dovrtel, Klemen & Medved, Sašo, 2011. "Weather-predicted control of building free cooling system," Applied Energy, Elsevier, vol. 88(9), pages 3088-3096.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1932-1942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.