IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p836-d1321660.html
   My bibliography  Save this article

Elution of Divalent Cations from Iron Ore Mining Waste in an Indirect Aqueous Mineral Carbonation for Carbon Capture and Storage

Author

Listed:
  • Muhammad Hameer Soomro

    (Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia)

  • Faradiella Mohd Kusin

    (Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
    Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia)

  • Ferdaus Mohamat-Yusuff

    (Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia)

  • Nik Norsyahariati Nik Daud

    (Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia)

Abstract

Mining waste is generated in vast quantities globally, which can have negative environmental consequences. This study highlights the utilization of iron ore mining waste as feedstock material in the preparatory step of an indirect aqueous mineral carbonation for carbon sequestration. The role of reactive cations (Ca 2+ , Mg 2+ , and Fe 2+ ) was investigated in view of their elution behavior to improve carbonation efficiency. An elution experiment was carried out for the divalent cations using different acids (oxalic, HCl, acetic, and formic acid) at different concentration solutions (up to 1.5 M) and times (up to 100 min) at ambient temperature. The initial analysis confirmed the presence of divalent cations in the sample. The elution approach at ambient temperature resulted in the elution efficiency of Fe 2+ (30.4%), Mg 2+ (54%) using oxalic acid, and Ca 2+ (98%) using HCl at a relatively short time between 50 and 100 min. It was found that for the iron ore mining waste, oxalic acid and HCl were best suited as elution agents for the Fe 2+ and Mg 2+ , and Ca 2+ , respectively. The CO 2 sequestration potential was calculated to be 131.58 g CO 2 /kg residue. A further carbonation step using a complexing agent (1,10 phenanthroline) confirmed the formation of siderite and magnesite along with phenanthroline hydrates. Findings have shown that the indirect mineral carbonation of the iron mining waste with complexing agent might improve carbonation efficiency, thus indicating that this material is useful for long-term carbon capture and storage applications.

Suggested Citation

  • Muhammad Hameer Soomro & Faradiella Mohd Kusin & Ferdaus Mohamat-Yusuff & Nik Norsyahariati Nik Daud, 2024. "Elution of Divalent Cations from Iron Ore Mining Waste in an Indirect Aqueous Mineral Carbonation for Carbon Capture and Storage," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:836-:d:1321660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/836/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/836/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Natália R. Galina & Gretta L. A. F. Arce & Mercedes Maroto-Valer & Ivonete Ávila, 2023. "Experimental Study on Mineral Dissolution and Carbonation Efficiency Applied to pH-Swing Mineral Carbonation for Improved CO 2 Sequestration," Energies, MDPI, vol. 16(5), pages 1-19, March.
    2. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    3. Yuhuan Sun & Feng Guan & Weiwei Yang & Fayuan Wang, 2019. "Removal of Chromium from a Contaminated Soil Using Oxalic Acid, Citric Acid, and Hydrochloric Acid: Dynamics, Mechanisms, and Concomitant Removal of Non-Targeted Metals," IJERPH, MDPI, vol. 16(15), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    2. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    3. Xie, Heping & Liu, Tao & Wang, Yufei & Wu, Yifan & Wang, Fuhuan & Tang, Liang & Jiang, Wen & Liang, Bin, 2017. "Enhancement of electricity generation in CO2 mineralization cell by using sodium sulfate as the reaction medium," Applied Energy, Elsevier, vol. 195(C), pages 991-999.
    4. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    5. Ming-hao Li & Xue-yan Gao & Can Li & Chun-long Yang & Chang-ai Fu & Jie Liu & Rui Wang & Lin-xu Chen & Jian-qiang Lin & Xiang-mei Liu & Jian-qun Lin & Xin Pang, 2020. "Isolation and Identification of Chromium Reducing Bacillus Cereus Species from Chromium-Contaminated Soil for the Biological Detoxification of Chromium," IJERPH, MDPI, vol. 17(6), pages 1-13, March.
    6. Maja Radziemska & Agnieszka Bęś & Zygmunt M. Gusiatin & Łukasz Sikorski & Martin Brtnicky & Grzegorz Majewski & Ernesta Liniauskienė & Václav Pecina & Rahul Datta & Ayla Bilgin & Zbigniew Mazur, 2020. "Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    7. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    8. Gwangmok Kim & Sangwon Park, 2021. "Chloride Removal of Calcium Aluminate-Layered Double Hydroxide Phases: A Review," IJERPH, MDPI, vol. 18(6), pages 1-12, March.
    9. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    10. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    11. Finn-Erik Digulla & Stefan Bringezu, 2023. "Comparative Life Cycle Assessment of Carbon Dioxide Mineralization Using Industrial Waste as Feedstock to Produce Cement Substitutes," Energies, MDPI, vol. 16(10), pages 1-22, May.
    12. Jiajie Li & Chenyu Wang & Xiaoqian Song & Xin Jin & Shaowei Zhao & Zihan Qi & Hui Zeng & Sitao Zhu & Fuxing Jiang & Wen Ni & Michael Hitch, 2022. "Market Stakeholder Analysis of the Practical Implementation of Carbonation Curing on Steel Slag for Urban Sustainable Governance," Energies, MDPI, vol. 15(7), pages 1-19, March.
    13. Rubens C. Toledo & Gretta L. A. F. Arce & João A. Carvalho & Ivonete Ávila, 2023. "Experimental Development of Calcium Looping Carbon Capture Processes: An Overview of Opportunities and Challenges," Energies, MDPI, vol. 16(9), pages 1-27, April.
    14. Wenjin Chen & Jun Zhang & Feng Li & Ruoyi Zhang & Sennan Qi & Guoqing Li & Chong Wang, 2023. "Low Carbon Economic Dispatch of Integrated Energy System Considering Power-to-Gas Heat Recovery and Carbon Capture," Energies, MDPI, vol. 16(8), pages 1-19, April.
    15. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    16. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    17. Park, Sangwon & Song, Kyungsun & Jo, Hwanju, 2017. "Laboratory-scale experiment on a novel mineralization-based method of CO2 capture using alkaline solution," Energy, Elsevier, vol. 124(C), pages 589-598.
    18. Li, Yingjie & Su, Mengying & Xie, Xin & Wu, Shuimu & Liu, Changtian, 2015. "CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis," Applied Energy, Elsevier, vol. 145(C), pages 60-68.
    19. Fan, Jing-Li & Xu, Mao & Li, Fengyu & Yang, Lin & Zhang, Xian, 2018. "Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: The technology lock-in and cost optimization perspective," Applied Energy, Elsevier, vol. 229(C), pages 326-334.
    20. Wee, Jung-Ho, 2013. "A review on carbon dioxide capture and storage technology using coal fly ash," Applied Energy, Elsevier, vol. 106(C), pages 143-151.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:836-:d:1321660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.