IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v110y2013icp98-103.html
   My bibliography  Save this article

Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach

Author

Listed:
  • Fang, Fang
  • Zang, Guo-Long
  • Sun, Min
  • Yu, Han-Qing

Abstract

Microbial fuel cell (MFC) is a device that transforms chemical energy in wastewater into electricity, and its performance is influenced by multi-variables. Mathematic modeling approach could be a useful alternative to design and optimize such a complex system for power generation and wastewater treatment. Here we develop a novel integrated modeling approach with uniform design (UD), a machine learning approach of relevance vector machine (RVM) and a global searching algorithm of accelerating genetic algorithm (AGA) to optimize the operation of multi-variable MFCs after they are constructed. With the integrated UD–RVM–AGA approach, a maximum Coulombic efficiency of 73.0% and power density of 1097mW/m3 of MFC are estimated under the optimal conditions of ionic concentration of 102mM, initial pH of 7.75, medium nitrogen concentration of 48.4mg/L, and temperature of 30.6°C. The Coulombic efficiency and power density in the verification experiments, 70.9% and 1156mW/m3, are close to those calculated by the modeling approach. The results demonstrate that the integrated UD–RVM–AGA approach is effective and reliable to optimize the complex MFC and improve its performance.

Suggested Citation

  • Fang, Fang & Zang, Guo-Long & Sun, Min & Yu, Han-Qing, 2013. "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach," Applied Energy, Elsevier, vol. 110(C), pages 98-103.
  • Handle: RePEc:eee:appene:v:110:y:2013:i:c:p:98-103
    DOI: 10.1016/j.apenergy.2013.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913003115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalez del Campo, A. & Lobato, J. & Cañizares, P. & Rodrigo, M.A. & Fernandez Morales, F.J., 2013. "Short-term effects of temperature and COD in a microbial fuel cell," Applied Energy, Elsevier, vol. 101(C), pages 213-217.
    2. Raman, Kumaran & Lan, John Chi-Wei, 2012. "Performance and kinetic study of photo microbial fuel cells (PMFCs) with different electrode distances," Applied Energy, Elsevier, vol. 100(C), pages 100-105.
    3. Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Luo & Hongyue Sun & Qingyun Ping & Ran Jin & Zhen He, 2016. "A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects," Energies, MDPI, vol. 9(2), pages 1-27, February.
    2. Shi, Xian-Yang & Li, Wen-Wei & Yu, Han-Qing, 2014. "Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata," Applied Energy, Elsevier, vol. 133(C), pages 121-126.
    3. Almatouq, A. & Babatunde, A.O., 2018. "Identifying optimized conditions for concurrent electricity production and phosphorus recovery in a mediator-less dual chamber microbial fuel cell," Applied Energy, Elsevier, vol. 230(C), pages 122-134.
    4. Pasternak, Grzegorz & Greenman, John & Ieropoulos, Ioannis, 2016. "Regeneration of the power performance of cathodes affected by biofouling," Applied Energy, Elsevier, vol. 173(C), pages 431-437.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    2. Szymon Potrykus & Luis Fernando León-Fernández & Janusz Nieznański & Dariusz Karkosiński & Francisco Jesus Fernandez-Morales, 2021. "The Influence of External Load on the Performance of Microbial Fuel Cells," Energies, MDPI, vol. 14(3), pages 1-11, January.
    3. Modestra, J. Annie & Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment," Renewable Energy, Elsevier, vol. 98(C), pages 178-187.
    4. Butti, Sai Kishore & Velvizhi, G. & Sulonen, Mira L.K. & Haavisto, Johanna M. & Oguz Koroglu, Emre & Yusuf Cetinkaya, Afsin & Singh, Surya & Arya, Divyanshu & Annie Modestra, J. & Vamsi Krishna, K. & , 2016. "Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 462-476.
    5. Marks, Stanislaw & Makinia, Jacek & Fernandez-Morales, Francisco Jesus, 2019. "Performance of microbial fuel cells operated under anoxic conditions," Applied Energy, Elsevier, vol. 250(C), pages 1-6.
    6. Nikhil, G.N. & Venkata Subhash, G. & Yeruva, Dileep Kumar & Venkata Mohan, S., 2015. "Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: Stoichiometric analysis of electron and carbon distribution," Energy, Elsevier, vol. 88(C), pages 281-291.
    7. Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
    8. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    9. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    10. ElMekawy, Ahmed & Hegab, Hanaa M. & Vanbroekhoven, Karolien & Pant, Deepak, 2014. "Techno-productive potential of photosynthetic microbial fuel cells through different configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 617-627.
    11. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    13. Wu, Yi-cheng & Wang, Ze-jie & Zheng, Yue & Xiao, Yong & Yang, Zhao-hui & Zhao, Feng, 2014. "Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism," Applied Energy, Elsevier, vol. 116(C), pages 86-90.
    14. Magdalena Zielińska & Katarzyna Bułkowska & Wioleta Mikucka, 2021. "Valorization of Distillery Stillage for Bioenergy Production: A Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
    15. Kokabian, Bahareh & Ghimire, Umesh & Gude, Veera Gnaneswar, 2018. "Water deionization with renewable energy production in microalgae - microbial desalination process," Renewable Energy, Elsevier, vol. 122(C), pages 354-361.
    16. Chen, Yinguang & Luo, Jingyang & Yan, Yuanyuan & Feng, Leiyu, 2013. "Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1197-1204.
    17. Lobato, Justo & González del Campo, Araceli & Fernández, Francisco J. & Cañizares, Pablo & Rodrigo, Manuel A., 2013. "Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae," Applied Energy, Elsevier, vol. 110(C), pages 220-226.
    18. Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
    19. Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
    20. Szymon Potrykus & Sara Mateo & Janusz Nieznański & Francisco Jesús Fernández-Morales, 2020. "The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model," Energies, MDPI, vol. 13(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:110:y:2013:i:c:p:98-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.