IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp213-217.html
   My bibliography  Save this article

Short-term effects of temperature and COD in a microbial fuel cell

Author

Listed:
  • Gonzalez del Campo, A.
  • Lobato, J.
  • Cañizares, P.
  • Rodrigo, M.A.
  • Fernandez Morales, F.J.

Abstract

In this work, chemical oxygen demand (COD) and temperature stress-tests on a microbial fuel cell (MFC) were studied. Regarding the temperature stress-test, its value was cyclically modified between 20 and 40°C with stepwise increments of 5°C. The main result was an exponentially increase in the current intensity generated. In these tests, no hysteresis was observed, indicating that the temperature stress-test did not modify the behaviour of the MFC used in this work. To study the response of the system under COD stress conditions, the influent COD concentration was stepwise modified from the steady-state value, 100mgCODL−1, to 3000mgCODL−1 and later was reduced stepwise again to 100mgCODL−1. In these test, it was observed that the higher the COD concentration, the higher the intensity generated. The electricity yield was an almost constant value of 6.7×10−6Amg−1COD removed per hour. In these tests, hysteresis was observed for the reverse scan, and a hysteresis loop was traced. To study how long the hysteresis lasts, several stress-tests were carried out during one week, and it was observed that the hysteresis was maintained for only 2days. After that, the system recovered the initial behaviour.

Suggested Citation

  • Gonzalez del Campo, A. & Lobato, J. & Cañizares, P. & Rodrigo, M.A. & Fernandez Morales, F.J., 2013. "Short-term effects of temperature and COD in a microbial fuel cell," Applied Energy, Elsevier, vol. 101(C), pages 213-217.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:213-217
    DOI: 10.1016/j.apenergy.2012.02.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    2. Dragone, Giuliano & Fernandes, Bruno D. & Abreu, Ana P. & Vicente, António A. & Teixeira, José A., 2011. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae," Applied Energy, Elsevier, vol. 88(10), pages 3331-3335.
    3. Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marks, Stanislaw & Makinia, Jacek & Fernandez-Morales, Francisco Jesus, 2019. "Performance of microbial fuel cells operated under anoxic conditions," Applied Energy, Elsevier, vol. 250(C), pages 1-6.
    2. Fang, Fang & Zang, Guo-Long & Sun, Min & Yu, Han-Qing, 2013. "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach," Applied Energy, Elsevier, vol. 110(C), pages 98-103.
    3. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    4. Jakub Drewnowski & Francisco Jesus Fernandez-Morales, 2016. "Heterotrophic Anodic Denitrification in Microbial Fuel Cells," Sustainability, MDPI, vol. 8(6), pages 1-10, June.
    5. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Szymon Potrykus & Luis Fernando León-Fernández & Janusz Nieznański & Dariusz Karkosiński & Francisco Jesus Fernandez-Morales, 2021. "The Influence of External Load on the Performance of Microbial Fuel Cells," Energies, MDPI, vol. 14(3), pages 1-11, January.
    7. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
    8. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    9. Szymon Potrykus & Sara Mateo & Janusz Nieznański & Francisco Jesús Fernández-Morales, 2020. "The Influent Effects of Flow Rate Profile on the Performance of Microbial Fuel Cells Model," Energies, MDPI, vol. 13(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    2. Neves, Viviane T. de C. & Sales, Emerson Andrade & Perelo, Louisa W., 2016. "Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 160-165.
    3. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    4. Samiee-Zafarghandi, Roudabeh & Karimi-Sabet, Javad & Abdoli, Mohammad Ali & Karbassi, Abdolreza, 2018. "Increasing microalgal carbohydrate content for hydrothermal gasification purposes," Renewable Energy, Elsevier, vol. 116(PA), pages 710-719.
    5. Juan Félix González & Teresa Belén Cuello & Antonio José Calderón & Manuel Calderón & Jerónimo González & Diego Carmona, 2021. "Cultivation of Autochthonous Microalgae for Biomass Feedstock: Growth Curves and Biomass Characterization for Their Use in Biorefinery Products," Energies, MDPI, vol. 14(15), pages 1-21, July.
    6. Lübken, Manfred & Koch, Konrad & Gehring, Tito & Horn, Harald & Wichern, Marc, 2015. "Parameter estimation and long-term process simulation of a biogas reactor operated under trace elements limitation," Applied Energy, Elsevier, vol. 142(C), pages 352-360.
    7. Shokrkar, Hanieh & Ebrahimi, Sirous, 2018. "Evaluation of different enzymatic treatment procedures on sugar extraction from microalgal biomass, experimental and kinetic study," Energy, Elsevier, vol. 148(C), pages 258-268.
    8. Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
    9. Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
    10. Choi, Hong Il & Sung, Young Joon & Hong, Min Eui & Han, Jonghee & Min, Byoung Koun & Sim, Sang Jun, 2022. "Reconsidering the potential of direct microalgal biomass utilization as end-products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
    13. Zhang, Quanguo & Nurhayati, & Cheng, Chieh-Lun & Nagarajan, Dillirani & Chang, Jo-Shu & Hu, Jianjun & Lee, Duu-Jong, 2017. "Carbon capture and utilization of fermentation CO2: Integrated ethanol fermentation and succinic acid production as an efficient platform," Applied Energy, Elsevier, vol. 206(C), pages 364-371.
    14. Merrylin Jayaseelan & Mohamed Usman & Adishkumar Somanathan & Sivashanmugam Palani & Gunasekaran Muniappan & Rajesh Banu Jeyakumar, 2021. "Microalgal Production of Biofuels Integrated with Wastewater Treatment," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    15. Qi, Zhao-qin & Fan, Shi-jie & Wang, Chin-tsan & Hu, Zi-yang, 2012. "Mixing effect of biometric flow channel in microbial fuel cells," Applied Energy, Elsevier, vol. 100(C), pages 106-111.
    16. Shen, Xiao-Fei & Liu, Jing-Jing & Chu, Fei-Fei & Lam, Paul K.S. & Zeng, Raymond J., 2015. "Enhancement of FAME productivity of Scenedesmus obliquus by combining nitrogen deficiency with sufficient phosphorus supply in heterotrophic cultivation," Applied Energy, Elsevier, vol. 158(C), pages 348-354.
    17. Xu, Xianzhen & Gu, Xiaoguang & Wang, Zhongyang & Shatner, William & Wang, Zhenjun, 2019. "Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 65-82.
    18. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
    19. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    20. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:213-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.