Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2012.06.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
- Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuai Luo & Hongyue Sun & Qingyun Ping & Ran Jin & Zhen He, 2016. "A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects," Energies, MDPI, vol. 9(2), pages 1-27, February.
- Li, Yangyang & Jin, Yiying & Li, Jinhui & Nie, Yongfeng, 2016. "Enhanced nitrogen distribution and biomethanation of kitchen waste by thermal pre-treatment," Renewable Energy, Elsevier, vol. 89(C), pages 380-388.
- Zou, Shuzhen & Wang, Hui & Wang, Xiaojiao & Zhou, Sha & Li, Xue & Feng, Yongzhong, 2016. "Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion," Applied Energy, Elsevier, vol. 179(C), pages 191-202.
- Justyna Swiatkiewicz & Radoslaw Slezak & Liliana Krzystek & Stanislaw Ledakowicz, 2021. "Production of Volatile Fatty Acids in a Semi-Continuous Dark Fermentation of Kitchen Waste: Impact of Organic Loading Rate and Hydraulic Retention Time," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Nabaterega, Resty & Kieft, Brandon & Hallam, Steven J. & Eskicioglu, Cigdem, 2022. "Fractional factorial experimental design for optimizing volatile fatty acids from anaerobic fermentation of municipal sludge: Microbial community and activity investigation," Renewable Energy, Elsevier, vol. 199(C), pages 733-744.
- Zhang, Zhe & Liu, Congmin & Liu, Wei & Du, Xu & Cui, Yong & Gong, Jian & Guo, Hua & Deng, Yulin, 2017. "Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell," Energy, Elsevier, vol. 141(C), pages 1019-1026.
- Sarkar, Omprakash & Butti, Sai Kishore & Venkata Mohan, S., 2017. "Acidogenesis driven by hydrogen partial pressure towards bioethanol production through fatty acids reduction," Energy, Elsevier, vol. 118(C), pages 425-434.
- Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
- Toczyłowska-Mamińska, Renata & Szymona, Karolina & Madej, Hubert & Wong, Wan Zhen & Bala, Agnieszka & Brutkowski, Wojciech & Krajewski, Krzysztof & H’ng, Paik San & Mamiński, Mariusz, 2015. "Cellulolytic and electrogenic activity of Enterobacter cloacae in mediatorless microbial fuel cell," Applied Energy, Elsevier, vol. 160(C), pages 88-93.
- Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
- Aakash Khadka & Anmol Parajuli & Sheila Dangol & Bijay Thapa & Lokesh Sapkota & Alessandro A. Carmona-Martínez & Anish Ghimire, 2022. "Effect of the Substrate to Inoculum Ratios on the Kinetics of Biogas Production during the Mesophilic Anaerobic Digestion of Food Waste," Energies, MDPI, vol. 15(3), pages 1-16, January.
- Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
- Ma, Jinxing & Wang, Zhiwei & Zhu, Chaowei & Xu, Yinlun & Wu, Zhichao, 2014. "Electrogenesis reduces the combustion efficiency of sewage sludge," Applied Energy, Elsevier, vol. 114(C), pages 283-289.
- Shuijing Wang & Chenming Xu & Liyan Song & Jin Zhang, 2022. "Anaerobic Digestion of Food Waste and Its Microbial Consortia: A Historical Review and Future Perspectives," IJERPH, MDPI, vol. 19(15), pages 1-21, August.
- Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
- Geng, Yi-Kun & Yuan, Li & Liu, Tong & Li, Zheng-Hao & Zheng, Xing & Sheng, Guo-Ping, 2020. "Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery," Applied Energy, Elsevier, vol. 275(C).
- Qiao Wang & Huan Li & Kai Feng & Jianguo Liu, 2020. "Oriented Fermentation of Food Waste towards High-Value Products: A Review," Energies, MDPI, vol. 13(21), pages 1-29, October.
- de Almeida Silva, Maria Cristina & Monteggia, Luiz Olinto & Alves Barroso Júnior, José Carlos & Granada, Camille Eichelberger & Giongo, Adriana, 2020. "Evaluation of semi-continuous operation to hydrogen and volatile fatty acids production using raw glycerol as substrate," Renewable Energy, Elsevier, vol. 153(C), pages 701-710.
- Luo, Jingyang & Feng, Leiyu & Zhang, Wei & Li, Xiang & Chen, Hong & Wang, Dongbo & Chen, Yinguang, 2014. "Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature," Applied Energy, Elsevier, vol. 113(C), pages 51-58.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
- Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
- Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
- Modestra, J. Annie & Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment," Renewable Energy, Elsevier, vol. 98(C), pages 178-187.
- Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
- Qi, Zhao-qin & Fan, Shi-jie & Wang, Chin-tsan & Hu, Zi-yang, 2012. "Mixing effect of biometric flow channel in microbial fuel cells," Applied Energy, Elsevier, vol. 100(C), pages 106-111.
- Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
- Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
- Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
- Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
- Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
- Magdalena Zielińska & Katarzyna Bułkowska & Wioleta Mikucka, 2021. "Valorization of Distillery Stillage for Bioenergy Production: A Review," Energies, MDPI, vol. 14(21), pages 1-17, November.
- Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
- Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
- Fang, Fang & Zang, Guo-Long & Sun, Min & Yu, Han-Qing, 2013. "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach," Applied Energy, Elsevier, vol. 110(C), pages 98-103.
- Lobato, Justo & González del Campo, Araceli & Fernández, Francisco J. & Cañizares, Pablo & Rodrigo, Manuel A., 2013. "Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae," Applied Energy, Elsevier, vol. 110(C), pages 220-226.
- Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
- Bajracharya, Suman & Sharma, Mohita & Mohanakrishna, Gunda & Dominguez Benneton, Xochitl & Strik, David P.B.T.B. & Sarma, Priyangshu M. & Pant, Deepak, 2016. "An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond," Renewable Energy, Elsevier, vol. 98(C), pages 153-170.
- Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
- J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
More about this item
Keywords
Waste activated sludge (WAS); Kitchen waste; Short-chain fatty acid (SCFA); Alkaline pH; Microbial fuel cells (MFCs);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:1197-1204. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.