Synergistic yield of dual energy forms through biocatalyzed electrofermentation of waste: Stoichiometric analysis of electron and carbon distribution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2015.05.043
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
- Hidalgo, Diana & Tommasi, Tonia & Cauda, Valentina & Porro, Samuele & Chiodoni, Angelica & Bejtka, Katarzyna & Ruggeri, Bernardo, 2014. "Streamlining of commercial Berl saddles: A new material to improve the performance of microbial fuel cells," Energy, Elsevier, vol. 71(C), pages 615-623.
- Wong, Y.M. & Juan, J.C. & Ting, Adeline & Wu, T.Y., 2014. "High efficiency bio-hydrogen production from glucose revealed in an inoculum of heat-pretreated landfill leachate sludge," Energy, Elsevier, vol. 72(C), pages 628-635.
- Mohanakrishna, G. & Mohan, S. Venkata, 2013. "Multiple process integrations for broad perspective analysis of fermentative H2 production from wastewater treatment: Technical and environmental considerations," Applied Energy, Elsevier, vol. 107(C), pages 244-254.
- Ashley E. Franks & Kelly P. Nevin, 2010. "Microbial Fuel Cells, A Current Review," Energies, MDPI, vol. 3(5), pages 1-21, April.
- Premier, G.C. & Kim, J.R. & Massanet-Nicolau, J. & Kyazze, G. & Esteves, S.R.R. & Penumathsa, B.K.V. & Rodríguez, J. & Maddy, J. & Dinsdale, R.M. & Guwy, A.J., 2013. "Integration of biohydrogen, biomethane and bioelectrochemical systems," Renewable Energy, Elsevier, vol. 49(C), pages 188-192.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jadhav, Dipak A. & Jain, Sumat C. & Ghangrekar, Makarand M., 2016. "Cow's urine as a yellow gold for bioelectricity generation in low cost clayware microbial fuel cell," Energy, Elsevier, vol. 113(C), pages 76-84.
- Butti, Sai Kishore & Velvizhi, G. & Sulonen, Mira L.K. & Haavisto, Johanna M. & Oguz Koroglu, Emre & Yusuf Cetinkaya, Afsin & Singh, Surya & Arya, Divyanshu & Annie Modestra, J. & Vamsi Krishna, K. & , 2016. "Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 462-476.
- Yeruva, Dileep Kumar & Velvizhi, G. & Mohan, S. Venkata, 2016. "Coupling of aerobic/anoxic and bioelectrogenic processes for treatment of pharmaceutical wastewater associated with bioelectricity generation," Renewable Energy, Elsevier, vol. 98(C), pages 171-177.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
- Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
- Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
- Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
- Stanislaus, Mishma S. & Zhang, Nan & Zhao, Chenyu & Zhu, Qi & Li, Dawei & Yang, Yingnan, 2017. "Ipomoea aquatica as a new substrate for enhanced biohydrogen production by using digested sludge as inoculum," Energy, Elsevier, vol. 118(C), pages 264-271.
- Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
- Paweł P. Włodarczyk & Barbara Włodarczyk, 2018. "Microbial Fuel Cell with Ni–Co Cathode Powered with Yeast Wastewater," Energies, MDPI, vol. 11(11), pages 1-9, November.
- Kabutey, Felix Tetteh & Zhao, Qingliang & Wei, Liangliang & Ding, Jing & Antwi, Philip & Quashie, Frank Koblah & Wang, Weiye, 2019. "An overview of plant microbial fuel cells (PMFCs): Configurations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 402-414.
- Ayyaru, Sivasankaran & Dharmalingam, Sangeetha, 2015. "A study of influence on nanocomposite membrane of sulfonated TiO2 and sulfonated polystyrene-ethylene-butylene-polystyrene for microbial fuel cell application," Energy, Elsevier, vol. 88(C), pages 202-208.
- Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
- Barbara Włodarczyk & Paweł P. Włodarczyk, 2023. "Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode," Energies, MDPI, vol. 16(6), pages 1-13, March.
- Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
- Modestra, J. Annie & Chiranjeevi, P. & Mohan, S. Venkata, 2016. "Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment," Renewable Energy, Elsevier, vol. 98(C), pages 178-187.
- Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
- Schilirò, T. & Tommasi, T. & Armato, C. & Hidalgo, D. & Traversi, D. & Bocchini, S. & Gilli, G. & Pirri, C.F., 2016. "The study of electrochemically active planktonic microbes in microbial fuel cells in relation to different carbon-based anode materials," Energy, Elsevier, vol. 106(C), pages 277-284.
- Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
- Cerrillo, Míriam & Viñas, Marc & Bonmatí, August, 2018. "Anaerobic digestion and electromethanogenic microbial electrolysis cell integrated system: Increased stability and recovery of ammonia and methane," Renewable Energy, Elsevier, vol. 120(C), pages 178-189.
- Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Modestra, J. Annie & Reddy, C. Nagendranatha & Krishna, K. Vamshi & Min, Booki & Mohan, S. Venkata, 2020. "Regulated surface potential impacts bioelectrogenic activity, interfacial electron transfer and microbial dynamics in microbial fuel cell," Renewable Energy, Elsevier, vol. 149(C), pages 424-434.
- Liu, Shu-Hui & Fu, Sih-Hua & Chen, Chia-Ying & Lin, Chi-Wen, 2020. "Enhanced processing of exhaust gas and power generation by connecting mini-tubular microbial fuel cells in series with a biotrickling filter," Renewable Energy, Elsevier, vol. 156(C), pages 342-348.
More about this item
Keywords
Biohydrogen; Bioelectricity; Electron capture; Electron sink; Proton harvest;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:281-291. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.