IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp122-134.html
   My bibliography  Save this article

Identifying optimized conditions for concurrent electricity production and phosphorus recovery in a mediator-less dual chamber microbial fuel cell

Author

Listed:
  • Almatouq, A.
  • Babatunde, A.O.

Abstract

Understanding the impact of key operational variables on concurrent electricity production and phosphorus recovery in a microbial fuel cell is required to improve the process and to reduce the operational costs. In this study, a novel mathematical modelling approach, including full factorial design and central composite designs, was employed in a dual-chamber microbial fuel cell to: (i) identify the effect of influent chemical oxygen demand concentration and cathode aeration flow rate on electricity production and phosphorus recovery and (ii) optimise microbial fuel cell power density and phosphorus recovery. Phosphorus was precipitated at the cathode chamber, and the precipitated crystals were verified as struvite using X-ray diffraction and scanning electron microscopy analysis. Response surface methodology showed that influent chemical oxygen demand concentration and cathode aeration flow rate had a joint significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. The effect of varying cathode aeration flow rates on power density and phosphorus recovery was dependent on chemical oxygen demand concentration. Phosphorus precipitation on the cathode electrode was negatively affected by the generated current during batch duration. The response surface mathematical model showed that concurrent high electricity production and high phosphorus recovery cannot be achieved under the same operating conditions; however, operating the microbial fuel cell at high chemical oxygen demand and high cathode aeration flow rate enhanced electricity production and phosphorus recovery. This was confirmed by the experimental results. These findings highlight the importance of operational conditions, such as influent chemical oxygen demand concentration and cathode aeration flow rate, on electricity production and phosphorus recovery.

Suggested Citation

  • Almatouq, A. & Babatunde, A.O., 2018. "Identifying optimized conditions for concurrent electricity production and phosphorus recovery in a mediator-less dual chamber microbial fuel cell," Applied Energy, Elsevier, vol. 230(C), pages 122-134.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:122-134
    DOI: 10.1016/j.apenergy.2018.08.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Zang, Guo-Long & Sun, Min & Yu, Han-Qing, 2013. "Optimizing multi-variables of microbial fuel cell for electricity generation with an integrated modeling and experimental approach," Applied Energy, Elsevier, vol. 110(C), pages 98-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Wu & Jieqiong Liu & Qiannan Li & Wenjun Mo & Ruihan Wan & Sen Peng, 2022. "Effect of Electrode Distances on Remediation of Eutrophic Water and Sediment by Sediment Microbial Fuel Cell Coupled Floating Beds," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    2. Wan, Taocheng & Bai, Yan & Wang, Tingxiang & Wei, Zhuo, 2022. "BPNN-based optimal strategy for dynamic energy optimization with providing proper thermal comfort under the different outdoor air temperatures," Applied Energy, Elsevier, vol. 313(C).
    3. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    4. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    5. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Luo & Hongyue Sun & Qingyun Ping & Ran Jin & Zhen He, 2016. "A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects," Energies, MDPI, vol. 9(2), pages 1-27, February.
    2. Shi, Xian-Yang & Li, Wen-Wei & Yu, Han-Qing, 2014. "Key parameters governing biological hydrogen production from benzoate by Rhodopseudomonas capsulata," Applied Energy, Elsevier, vol. 133(C), pages 121-126.
    3. Pasternak, Grzegorz & Greenman, John & Ieropoulos, Ioannis, 2016. "Regeneration of the power performance of cathodes affected by biofouling," Applied Energy, Elsevier, vol. 173(C), pages 431-437.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:122-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.