IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i3p1026-1039.html
   My bibliography  Save this article

Quality of wind speed fitting distributions for the urban area of Palermo, Italy

Author

Listed:
  • Lo Brano, Valerio
  • Orioli, Aldo
  • Ciulla, Giuseppina
  • Culotta, Simona

Abstract

This study investigates the wind speed characteristics recorded in the urban area of Palermo, in the south of Italy, by a monitoring network composed by four weather stations. This article has two main objectives: the first one, to describe with clarity and simplicity the numerical procedures adopted to perform a preliminary statistical analysis of wind speed data, providing at the same time, the necessary mathematical tools useful to perform this analysis also without special software. The second objective is to verify if there are more suitable probability distributions able to better represent the original data respect the traditional ones. After a preliminary statistical analysis, in which the wind speed time series are split and analysed for each month and season, seven probability density functions are employed to describe wind speed frequency distributions: Weibull, Rayleigh, Lognormal, Gamma, Inverse Gaussian, Pearson type V and Burr. Shape and scale parameters for each weather station, period and distribution are provided. Their estimation is performed using the maximum likelihood method and the maximum likelihood estimators for each probability density function are provided. The quality of the data-fit is assessed by the classic statistical test Kolmogorov–Smirnov. The statistical test is used to rank the selected distributions in order to identify the distribution better fitting with the wind speed data measured in the urban area of Palermo. The Burr probability density function seems to be the most reliable statistical distribution.

Suggested Citation

  • Lo Brano, Valerio & Orioli, Aldo & Ciulla, Giuseppina & Culotta, Simona, 2011. "Quality of wind speed fitting distributions for the urban area of Palermo, Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1026-1039.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1026-1039
    DOI: 10.1016/j.renene.2010.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110004210
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ucar, Aynur & Balo, Figen, 2009. "Investigation of wind characteristics and assessment of wind-generation potentiality in Uludag-Bursa, Turkey," Applied Energy, Elsevier, vol. 86(3), pages 333-339, March.
    2. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    3. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    2. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    3. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    4. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    5. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    6. Emilio Gómez-Lázaro & María C. Bueso & Mathieu Kessler & Sergio Martín-Martínez & Jie Zhang & Bri-Mathias Hodge & Angel Molina-García, 2016. "Probability Density Function Characterization for Aggregated Large-Scale Wind Power Based on Weibull Mixtures," Energies, MDPI, vol. 9(2), pages 1-15, February.
    7. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
    8. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Miao, Zhuang, 2014. "Environmental/economic power dispatch with wind power," Renewable Energy, Elsevier, vol. 71(C), pages 234-242.
    9. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    10. Mazzeo, Domenico & Oliveti, Giuseppe & Labonia, Ester, 2018. "Estimation of wind speed probability density function using a mixture of two truncated normal distributions," Renewable Energy, Elsevier, vol. 115(C), pages 1260-1280.
    11. Ally, Clint & Bahadoorsingh, Sanjay & Singh, Arvind & Sharma, Chandrabhan, 2015. "A review and technical assessment integrating wind energy into an island power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 863-874.
    12. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    13. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Qing, Xiangyun, 2018. "Statistical analysis of wind energy characteristics in Santiago island, Cape Verde," Renewable Energy, Elsevier, vol. 115(C), pages 448-461.
    15. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    16. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
    17. Akdag, S.A. & Bagiorgas, H.S. & Mihalakakou, G., 2010. "Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean," Applied Energy, Elsevier, vol. 87(8), pages 2566-2573, August.
    18. Jin, Jingliang & Zhou, Dequn & Zhou, Peng & Qian, Shuqu & Zhang, Mingming, 2016. "Dispatching strategies for coordinating environmental awareness and risk perception in wind power integrated system," Energy, Elsevier, vol. 106(C), pages 453-463.
    19. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    20. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:3:p:1026-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.