IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v176y2016icp80-91.html
   My bibliography  Save this article

Generation and evaluation of space–time trajectories of photovoltaic power

Author

Listed:
  • Golestaneh, Faranak
  • Gooi, Hoay Beng
  • Pinson, Pierre

Abstract

In the probabilistic energy forecasting literature, emphasis is mainly placed on deriving marginal predictive densities for which each random variable is dealt with individually. Such marginals description is sufficient for power systems related operational problems if and only if optimal decisions are to be made for each lead-time and each location independently of each other. However, many of these operational processes are temporally and spatially coupled, while uncertainty in photovoltaic (PV) generation is strongly dependent in time and in space. This issue is addressed here by analysing and capturing spatio-temporal dependencies in PV generation. Multivariate predictive distributions are modelled and space–time trajectories describing the potential evolution of forecast errors through successive lead-times and locations are generated. Discrimination ability of the relevant scoring rules on performance assessment of space–time trajectories of PV generation is also studied. Finally, the advantage of taking into account space–time correlations over probabilistic and point forecasts is investigated. The empirical investigation is based on the solar PV dataset of the Global Energy Forecasting Competition (GEFCom) 2014.

Suggested Citation

  • Golestaneh, Faranak & Gooi, Hoay Beng & Pinson, Pierre, 2016. "Generation and evaluation of space–time trajectories of photovoltaic power," Applied Energy, Elsevier, vol. 176(C), pages 80-91.
  • Handle: RePEc:eee:appene:v:176:y:2016:i:c:p:80-91
    DOI: 10.1016/j.apenergy.2016.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916306079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Dazhi & Gu, Chaojun & Dong, Zibo & Jirutitijaroen, Panida & Chen, Nan & Walsh, Wilfred M., 2013. "Solar irradiance forecasting using spatial-temporal covariance structures and time-forward kriging," Renewable Energy, Elsevier, vol. 60(C), pages 235-245.
    2. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    3. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    4. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
    5. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    6. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    7. Qin, Zhilong & Li, Wenyuan & Xiong, Xiaofu, 2013. "Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation," Applied Energy, Elsevier, vol. 110(C), pages 285-294.
    8. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    9. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jian & Wang, Jing & Liao, Siyang & Sun, Yuanzhang & Ke, Deping & Li, Xiong & Liu, Ji & Jiang, Yibo & Wei, Congying & Tang, Bowen, 2018. "Stochastic multi-objective optimization of photovoltaics integrated three-phase distribution network based on dynamic scenarios," Applied Energy, Elsevier, vol. 231(C), pages 985-996.
    2. Yan, Xingyu & Abbes, Dhaker & Francois, Bruno, 2017. "Uncertainty analysis for day ahead power reserve quantification in an urban microgrid including PV generators," Renewable Energy, Elsevier, vol. 106(C), pages 288-297.
    3. Pinto, Rui & Bessa, Ricardo J. & Matos, Manuel A., 2017. "Multi-period flexibility forecast for low voltage prosumers," Energy, Elsevier, vol. 141(C), pages 2251-2263.
    4. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    5. Camal, S. & Teng, F. & Michiorri, A. & Kariniotakis, G. & Badesa, L., 2019. "Scenario generation of aggregated Wind, Photovoltaics and small Hydro production for power systems applications," Applied Energy, Elsevier, vol. 242(C), pages 1396-1406.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    3. Mike Ludkovski & Glen Swindle & Eric Grannan, 2022. "Large Scale Probabilistic Simulation of Renewables Production," Papers 2205.04736, arXiv.org.
    4. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    5. David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
    6. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    7. Benjamin Avanzi & Eric Dong & Patrick J. Laub & Bernard Wong, 2024. "Distributional Refinement Network: Distributional Forecasting via Deep Learning," Papers 2406.00998, arXiv.org.
    8. Wang, Wei & Feng, Bin & Huang, Gang & Guo, Chuangxin & Liao, Wenlong & Chen, Zhe, 2023. "Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction," Applied Energy, Elsevier, vol. 333(C).
    9. Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
    10. Werner Ehm & Tilmann Gneiting & Alexander Jordan & Fabian Krüger, 2016. "Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 505-562, June.
    11. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    12. van der Meer, Dennis & Wang, Guang Chao & Munkhammar, Joakim, 2021. "An alternative optimal strategy for stochastic model predictive control of a residential battery energy management system with solar photovoltaic," Applied Energy, Elsevier, vol. 283(C).
    13. van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
    14. Oliver Grothe & Fabian Kachele & Fabian Kruger, 2022. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Papers 2204.10154, arXiv.org.
    15. Milan Szabo, 2024. "Disciplining growth‐at‐risk models with survey of professional forecasters and Bayesian quantile regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1975-1981, September.
    16. Arrieta-Prieto, Mario & Schell, Kristen R., 2022. "Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model," International Journal of Forecasting, Elsevier, vol. 38(1), pages 300-320.
    17. C. Alexander & M. Coulon & Y. Han & X. Meng, 2024. "Evaluating the discrimination ability of proper multi-variate scoring rules," Annals of Operations Research, Springer, vol. 334(1), pages 857-883, March.
    18. Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
    19. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    20. Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:176:y:2016:i:c:p:80-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.