IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v129y2018ipap168-182.html
   My bibliography  Save this article

New methods to assess wind resources in terms of wind speed, load, power and direction

Author

Listed:
  • Gugliani, G.K.
  • Sarkar, A.
  • Ley, C.
  • Mandal, S.

Abstract

The 2-parameter Weibull distribution is widely used, accepted, and recommended as probability law to describe and evaluate the wind speed frequency, which is especially useful for assessing wind resources. In this study, six popular parameter estimation methods are reviewed and compared with a new method that we call Modified Energy Pattern Factor (MEPF) method. The advantage of MEPF is that it is free from binning, linear least square problems or iterative procedures. All methods are compared via a thorough Monte Carlo simulation study with sample sizes varying from 100 to 100,000. The results indicate that the MEPF is a suitable alternative and comparable with the relatively best estimator of the Weibull parameters at each sample size. Consequently, we have used the MEPF to estimate the Weibull parameters of wind data from three regions in India, and we explain how to use these insights for the calculation and prediction of wind energy production. In particular, for harnessing the wind energy, both wind speed and direction are important. For the wind direction assessment, we have compared the conventional von Mises distribution to the new 4-parameter Kato-Jones distribution, and found that the latter approach provides better results.

Suggested Citation

  • Gugliani, G.K. & Sarkar, A. & Ley, C. & Mandal, S., 2018. "New methods to assess wind resources in terms of wind speed, load, power and direction," Renewable Energy, Elsevier, vol. 129(PA), pages 168-182.
  • Handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:168-182
    DOI: 10.1016/j.renene.2018.05.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811830613X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.05.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nawri, Nikolai & Petersen, Guðrún Nína & Bjornsson, Halldór & Hahmann, Andrea N. & Jónasson, Kristján & Hasager, Charlotte Bay & Clausen, Niels-Erik, 2014. "The wind energy potential of Iceland," Renewable Energy, Elsevier, vol. 69(C), pages 290-299.
    2. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    3. Al-Hasan, Mohammed & Nigmatullin, Raoul R., 2003. "Identification of the generalized Weibull distribution in wind speed data by the Eigen-coordinates method," Renewable Energy, Elsevier, vol. 28(1), pages 93-110.
    4. Tar, Károly, 2008. "Some statistical characteristics of monthly average wind speed at various heights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(6), pages 1712-1724, August.
    5. Sharma, Kaushik & Ahmed, M. Rafiuddin, 2016. "Wind energy resource assessment for the Fiji Islands: Kadavu Island and Suva Peninsula," Renewable Energy, Elsevier, vol. 89(C), pages 168-180.
    6. Khadem, Shafiuzzaman Khan & Hussain, Muhtasham, 2006. "A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh," Renewable Energy, Elsevier, vol. 31(14), pages 2329-2341.
    7. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    8. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    9. Migoya, Emilio & Crespo, Antonio & Jiménez, Ángel & García, Javier & Manuel, Fernando, 2007. "Wind energy resource assessment in Madrid region," Renewable Energy, Elsevier, vol. 32(9), pages 1467-1483.
    10. Carrasco-Díaz, Magdiel & Rivas, David & Orozco-Contreras, Manuel & Sánchez-Montante, Orzo, 2015. "An assessment of wind power potential along the coast of Tamaulipas, northeastern Mexico," Renewable Energy, Elsevier, vol. 78(C), pages 295-305.
    11. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    12. Abe, Toshihiro & Ley, Christophe, 2017. "A tractable, parsimonious and flexible model for cylindrical data, with applications," Econometrics and Statistics, Elsevier, vol. 4(C), pages 91-104.
    13. Shogo Kato & M. C. Jones, 2015. "A tractable and interpretable four-parameter family of unimodal distributions on the circle," Biometrika, Biometrika Trust, vol. 102(1), pages 181-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2019. "Concept of flexible vertical-axis wind turbine with numerical simulation and shape optimization," Energy, Elsevier, vol. 167(C), pages 841-852.
    2. Ning Li & Fuxing He & Wentao Ma, 2019. "Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss," Energies, MDPI, vol. 12(4), pages 1-19, February.
    3. Lins, Davi Ribeiro & Guedes, Kevin Santos & Pitombeira-Neto, Anselmo Ramalho & Rocha, Paulo Alexandre Costa & de Andrade, Carla Freitas, 2023. "Comparison of the performance of different wind speed distribution models applied to onshore and offshore wind speed data in the Northeast Brazil," Energy, Elsevier, vol. 278(PA).
    4. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    5. Ghorbani, Bahram & Zendehboudi, Sohrab & Moradi, Mostafa, 2021. "Development of an integrated structure of hydrogen and oxygen liquefaction cycle using wind turbines, Kalina power generation cycle, and electrolyzer," Energy, Elsevier, vol. 221(C).
    6. Mohammad Arashi & Priyanka Nagar & Andriette Bekker, 2020. "Joint Probabilistic Modeling of Wind Speed and Wind Direction for Wind Energy Analysis: A Case Study in Humansdorp and Noupoort," Sustainability, MDPI, vol. 12(11), pages 1-15, May.
    7. Gugliani, Gaurav Kumar & Sarkar, Arnab & Ley, Christophe & Matsagar, Vasant, 2021. "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index," Renewable Energy, Elsevier, vol. 171(C), pages 902-914.
    8. Alberto-Jesus Perea-Moreno & Gerardo Alcalá & Quetzalcoatl Hernandez-Escobedo, 2019. "Seasonal Wind Energy Characterization in the Gulf of Mexico," Energies, MDPI, vol. 13(1), pages 1-21, December.
    9. Sun, Shaolong & Du, Zongjuan & Jin, Kun & Li, Hongtao & Wang, Shouyang, 2023. "Spatiotemporal wind power forecasting approach based on multi-factor extraction method and an indirect strategy," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usta, Ilhan, 2016. "An innovative estimation method regarding Weibull parameters for wind energy applications," Energy, Elsevier, vol. 106(C), pages 301-314.
    2. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    3. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    4. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    5. Saleh, H. & Abou El-Azm Aly, A. & Abdel-Hady, S., 2012. "Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt," Energy, Elsevier, vol. 44(1), pages 710-719.
    6. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    7. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    8. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    9. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    10. Alkhalidi, Mohamad A. & Al-Dabbous, Shoug Kh. & Neelamani, S. & Aldashti, Hassan A., 2019. "Wind energy potential at coastal and offshore locations in the state of Kuwait," Renewable Energy, Elsevier, vol. 135(C), pages 529-539.
    11. Li, Yi & Wu, Xiao-Peng & Li, Qiu-Sheng & Tee, Kong Fah, 2018. "Assessment of onshore wind energy potential under different geographical climate conditions in China," Energy, Elsevier, vol. 152(C), pages 498-511.
    12. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    13. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    14. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.
    15. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    16. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    17. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    18. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    19. Sumair, Muhammad & Aized, Tauseef & Aslam Bhutta, Muhammad Mahmood & Siddiqui, Farrukh Arsalan & Tehreem, Layba & Chaudhry, Abduallah, 2022. "Method of Four Moments Mixture-A new approach for parametric estimation of Weibull Probability Distribution for wind potential estimation applications," Renewable Energy, Elsevier, vol. 191(C), pages 291-304.
    20. Song, Dongran & Yang, Yinggang & Zheng, Songyue & Tang, Weiyi & Yang, Jian & Su, Mei & Yang, Xuebing & Joo, Young Hoon, 2019. "Capacity factor estimation of variable-speed wind turbines considering the coupled influence of the QN-curve and the air density," Energy, Elsevier, vol. 183(C), pages 1049-1060.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:129:y:2018:i:pa:p:168-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.