IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3491-d265965.html
   My bibliography  Save this article

Impact of Water Content on Energy Potential and Combustion Characteristics of Methanol and Ethanol Fuels

Author

Listed:
  • Jozef Martinka

    (Faculty of Materials Science and Technology in Trnava, Institute of Integrated Safety, Slovak University of Technology in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovakia)

  • Peter Rantuch

    (Faculty of Materials Science and Technology in Trnava, Institute of Integrated Safety, Slovak University of Technology in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovakia)

  • Igor Wachter

    (Faculty of Materials Science and Technology in Trnava, Institute of Integrated Safety, Slovak University of Technology in Bratislava, Jana Bottu 2781/25, 917 24 Trnava, Slovakia)

Abstract

Methanol and ethanol are among the most important biofuels and raw materials used to produce biorenewable fuels. These fuels are used with varying water contents. Nevertheless, the exact impact of the water content of these fuels on the energy potential and combustion characteristics is still unknown. Besides that, there are two noticeable risks (environmental impact of combustion and fire risk) associated with their production, processing, and utilization. Likewise, impact of the water content of these fuels on fire risk and the impact of their combustion on the environment is also unknown. The best indicator of energy potential is the effective heat of combustion, and the best combustion characteristic and indicator of the impact of the combustion of alcohols on the environment is the carbon monoxide (CO) yield, whereas the fire risk of liquid fuels is quantified by the flash point and maximum heat release rate (mHRR). The dependency of flash point on the water content was determined via the Pensky-Martens apparatus and the dependencies of the effective heat of combustion, CO yield, and mHRR on the water content were determined via the cone calorimeter. With increased water content, the flash points of both methanol and ethanol exponentially increased and the both effective heat of combustion and mHRR almost linearly decreased. In the range of water content from 0 to 60%, the CO yield of both methanol and ethanol was practically independent of the water content.

Suggested Citation

  • Jozef Martinka & Peter Rantuch & Igor Wachter, 2019. "Impact of Water Content on Energy Potential and Combustion Characteristics of Methanol and Ethanol Fuels," Energies, MDPI, vol. 12(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3491-:d:265965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3491/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    2. Srinivasan, Kalyan K. & Mago, Pedro J. & Krishnan, Sundar R., 2010. "Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an Organic Rankine Cycle," Energy, Elsevier, vol. 35(6), pages 2387-2399.
    3. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    4. Chinmay V. Kurambhatti & Deepak Kumar & Kent D. Rausch & Mike E. Tumbleson & Vijay Singh, 2018. "Ethanol Production from Corn Fiber Separated after Liquefaction in the Dry Grind Process," Energies, MDPI, vol. 11(11), pages 1-12, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Olga Orynycz & Karol Tucki & Antoni Świć, 2022. "Combustion, Ecological, and Energetic Indicators for Mixtures of Hydrotreated Vegetable Oil (HVO) with Duck Fat Applied as Fuel in a Compression Ignition Engine," Energies, MDPI, vol. 15(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
    2. Mamat, Aman M.I. & Romagnoli, Alessandro & Martinez-Botas, Ricardo F., 2014. "Characterisation of a low pressure turbine for turbocompounding applications in a heavily downsized mild-hybrid gasoline engine," Energy, Elsevier, vol. 64(C), pages 3-16.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    5. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    6. Zegenhagen, M.T. & Ziegler, F., 2015. "Feasibility analysis of an exhaust gas waste heat driven jet-ejector cooling system for charge air cooling of turbocharged gasoline engines," Applied Energy, Elsevier, vol. 160(C), pages 221-230.
    7. Xu, Rong-Hong & Zhao, Tian & Ma, Huan & He, Ke-Lun & Lv, Hong-Kun & Guo, Xu-Tao & Chen, Qun, 2023. "Operation optimization of distributed energy systems considering nonlinear characteristics of multi-energy transport and conversion processes," Energy, Elsevier, vol. 283(C).
    8. Kim, Dong Kyu & Lee, Ji Sung & Kim, Jinwoo & Kim, Mo Se & Kim, Min Soo, 2017. "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C," Applied Energy, Elsevier, vol. 189(C), pages 55-65.
    9. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    10. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Steffen, Michael & Löffler, Michael & Schaber, Karlheinz, 2013. "Efficiency of a new Triangle Cycle with flash evaporation in a piston engine," Energy, Elsevier, vol. 57(C), pages 295-307.
    12. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    13. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    14. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    15. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    16. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    17. Domingues, António & Santos, Helder & Costa, Mário, 2013. "Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle," Energy, Elsevier, vol. 49(C), pages 71-85.
    18. Ghaderi Masouleh, M. & Keskinen, K. & Kaario, O. & Kahila, H. & Karimkashi, S. & Vuorinen, V., 2019. "Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds," Applied Energy, Elsevier, vol. 250(C), pages 801-820.
    19. Ramasamy, D. & Zainal, Z.A. & Kadirgama, K. & Walker-Gitano Briggs, Horizon, 2016. "Effect of dissimilar valve lift on a bi-fuel CNG engine operation," Energy, Elsevier, vol. 112(C), pages 509-519.
    20. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3491-:d:265965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.