IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp38-48.html
   My bibliography  Save this article

Technical and economic assessment of food waste valorization through a biorefinery chain

Author

Listed:
  • Demichelis, Francesca
  • Fiore, Silvia
  • Pleissner, Daniel
  • Venus, Joachim

Abstract

This work presents the economic assessment of an integrated biorefinery process for sequential fermentative production of lactic acid and biogas from food waste. The integrated biorefinery process was compared to single processes for either lactic acid or biogas production. The economic assessment, considering catchment areas from 2000 to 1 million inhabitants, was based on data from real biorefinery plants and carried out using SuperPro Designer® 8.0. The consistency of the approach was evaluated through a set of composite indicators. The integrated biorefinery process was investigated for its economic feasibility of producing lactic acid and biogas, the impact of process scale as well as energy use. Outcomes revealed that an integrated biorefinery process contributes more to optimal use of energy and material flows than single processes. Profitability was confirmed for catchment areas larger than 20,000–50,000 inhabitants.

Suggested Citation

  • Demichelis, Francesca & Fiore, Silvia & Pleissner, Daniel & Venus, Joachim, 2018. "Technical and economic assessment of food waste valorization through a biorefinery chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 38-48.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:38-48
    DOI: 10.1016/j.rser.2018.05.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211830409X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.05.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    2. Dennehy, C. & Lawlor, P.G. & Gardiner, G.E. & Jiang, Y. & Shalloo, L. & Zhan, X., 2017. "Stochastic modelling of the economic viability of on-farm co-digestion of pig manure and food waste in Ireland," Applied Energy, Elsevier, vol. 205(C), pages 1528-1537.
    3. Galik, Christopher S., 2015. "Exploring the determinants of emerging bioenergy market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 107-116.
    4. Unido, 2016. "World Statistics on Mining and Utilities 2016," Books, Edward Elgar Publishing, number 17464.
    5. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    6. Mehr, A.S. & Gandiglio, M. & MosayebNezhad, M. & Lanzini, A. & Mahmoudi, S.M.S. & Yari, M. & Santarelli, M., 2017. "Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis," Applied Energy, Elsevier, vol. 191(C), pages 620-638.
    7. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    8. Varrone, C. & Liberatore, R. & Crescenzi, T. & Izzo, G. & Wang, A., 2013. "The valorization of glycerol: Economic assessment of an innovative process for the bioconversion of crude glycerol into ethanol and hydrogen," Applied Energy, Elsevier, vol. 105(C), pages 349-357.
    9. Kudakasseril Kurian, Jiby & Raveendran Nair, Gopu & Hussain, Abid & Vijaya Raghavan, G.S., 2013. "Feedstocks, logistics and pre-treatment processes for sustainable lignocellulosic biorefineries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 205-219.
    10. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    11. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    12. Van Dael, Miet & Van Passel, Steven & Pelkmans, Luc & Guisson, Ruben & Reumermann, Patrick & Luzardo, Nathalie Marquez & Witters, Nele & Broeze, Jan, 2013. "A techno-economic evaluation of a biomass energy conversion park," Applied Energy, Elsevier, vol. 104(C), pages 611-622.
    13. Arnò, Paolo & Fiore, Silvia & Verda, Vittorio, 2017. "Assessment of anaerobic co-digestion in areas with heterogeneous waste production densities," Energy, Elsevier, vol. 122(C), pages 221-236.
    14. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    15. Sen, Biswarup & Aravind, J. & Kanmani, P. & Lay, Chyi-How, 2016. "State of the art and future concept of food waste fermentation to bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 547-557.
    16. Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2013. "Economic and environmental optimization model for the design and the operation of a combined heat and power distributed generation system in an urban area," Energy, Elsevier, vol. 55(C), pages 1014-1024.
    17. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    18. John H. J. Einmahl & Laurens Haan & Chen Zhou, 2016. "Statistics of heteroscedastic extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 31-51, January.
    19. Yasar, Abdullah & Nazir, Saba & Rasheed, Rizwan & Tabinda, Amtul Bari & Nazar, Masooma, 2017. "Economic review of different designs of biogas plants at household level in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 221-229.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Jeehoon & Byun, Jaewon & Kwon, Oseok & Lee, Jechan, 2022. "Climate variability and food waste treatment: Analysis for bioenergy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Nathana L. Cristofoli & Alexandre R. Lima & Rose D. N. Tchonkouang & Andreia C. Quintino & Margarida C. Vieira, 2023. "Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development," Sustainability, MDPI, vol. 15(7), pages 1-33, April.
    3. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Tanmay Chaturvedi & Ana I. Torres & George Stephanopoulos & Mette Hedegaard Thomsen & Jens Ejbye Schmidt, 2020. "Developing Process Designs for Biorefineries—Definitions, Categories, and Unit Operations," Energies, MDPI, vol. 13(6), pages 1-22, March.
    5. Do, Quynh & Ramudhin, Amar & Colicchia, Claudia & Creazza, Alessandro & Li, Dong, 2021. "A systematic review of research on food loss and waste prevention and management for the circular economy," International Journal of Production Economics, Elsevier, vol. 239(C).
    6. Cong, Rong-Gang & Thomsen, Marianne, 2021. "Review of ecosystem services in a bio-based circular economy and governance mechanisms," Ecosystem Services, Elsevier, vol. 50(C).
    7. Jourdin, Ludovic & Sousa, João & Stralen, Niels van & Strik, David P.B.T.B., 2020. "Techno-economic assessment of microbial electrosynthesis from CO2 and/or organics: An interdisciplinary roadmap towards future research and application," Applied Energy, Elsevier, vol. 279(C).
    8. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    3. Francesca Demichelis & Francesco Piovano & Silvia Fiore, 2019. "Biowaste Management in Italy: Challenges and Perspectives," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    4. Yan, Kai & Jarvis, Cody & Gu, Jing & Yan, Yong, 2015. "Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 986-997.
    5. Troiano, D. & Orsat, V. & Dumont, M.J., 2020. "Status of filamentous fungi in integrated biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    7. Jacek Wójcik, 2017. "Consequences of the Cognitive Digital Divide on the Consumer Market," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 44, pages 69-80.
    8. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    9. Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
    10. Carvalho, Ana Karine F. & Bento, Heitor B.S. & Izário Filho, Hélcio J. & de Castro, Heizir F., 2018. "Approaches to convert Mucor circinelloides lipid into biodiesel by enzymatic synthesis assisted by microwave irradiations," Renewable Energy, Elsevier, vol. 125(C), pages 747-754.
    11. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    12. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    13. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    14. Andrea Kunnert, 2016. "Leistbarkeit von Wohnen in Österreich. Operationalisierung und demographische Komponenten," WIFO Studies, WIFO, number 58932.
    15. Baharam Roy & Peter Kleine-Möllhoff & Antoine Dalibard, 2022. "Superheated Steam Torrefaction of Biomass Residues with Valorisation of Platform Chemicals Part—2: Economic Assessment and Commercialisation Opportunities," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    16. Nicoletti, Giuseppe & von Rueden, Christina & Andrews, Dan, 2020. "Digital technology diffusion: A matter of capabilities, incentives or both?," European Economic Review, Elsevier, vol. 128(C).
    17. Kalil Rahiman, M. & Santhoshkumar, S. & Subramaniam, D. & Avinash, A. & Pugazhendhi, Arivalagan, 2022. "Effects of oxygenated fuel pertaining to fuel analysis on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 239(PD).
    18. Lu, Ying & Prato, Carlo G. & Sipe, Neil & Kimpton, Anthony & Corcoran, Jonathan, 2022. "The role of household modality style in first and last mile travel mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 95-109.
    19. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    20. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:38-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.