IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4249-d1257674.html
   My bibliography  Save this article

Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels

Author

Listed:
  • Jianyu Wang

    (College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
    These authors contributed equally to this work.)

  • Chunhua Fang

    (College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China
    These authors contributed equally to this work.)

  • Guifeng Zhang

    (College of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006, China)

Abstract

In this paper, we focus on the numerical solution of the second kind of Volterra integral equation with a highly oscillatory Fourier kernel. Based on the calculation of the modified moments, we propose four collocation methods to solve the equations: direct linear interpolation, direct higher order interpolation, direct Hermite interpolation and piecewise Hermite interpolation. These four methods are simple to construct and can quickly compute highly oscillatory integrals involving Fourier functions. We present the corresponding error analysis and it is easy to see that, in some cases, our proposed method has a fast convergence rate in solving such equations. In some cases, our proposed methods have significant advantages over the existing methods. Some numerical experiments demonstrating the efficiency of the four methods are also presented.

Suggested Citation

  • Jianyu Wang & Chunhua Fang & Guifeng Zhang, 2023. "Multi-Effective Collocation Methods for Solving the Volterra Integral Equation with Highly Oscillatory Fourier Kernels," Mathematics, MDPI, vol. 11(20), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4249-:d:1257674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Guidong & Xiang, Shuhuang, 2019. "Clenshaw–Curtis-type quadrature rule for hypersingular integrals with highly oscillatory kernels," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 251-267.
    2. Tuan, Nguyen Huy & Mohammadi, Hakimeh & Rezapour, Shahram, 2020. "A mathematical model for COVID-19 transmission by using the Caputo fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Yang, Xuehua & Wu, Lijiao & Zhang, Haixiang, 2023. "A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity," Applied Mathematics and Computation, Elsevier, vol. 457(C).
    4. Hao Chen & Ling Liu & Junjie Ma, 2020. "Analysis of Generalized Multistep Collocation Solutions for Oscillatory Volterra Integral Equations," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    2. Abdumauvlen Berdyshev & Dossan Baigereyev & Kulzhamila Boranbek, 2023. "Numerical Method for Fractional-Order Generalization of the Stochastic Stokes–Darcy Model," Mathematics, MDPI, vol. 11(17), pages 1-27, September.
    3. Kouidere, Abdelfatah & Balatif, Omar & Rachik, Mostafa, 2021. "Analysis and optimal control of a mathematical modeling of the spread of African swine fever virus with a case study of South Korea and cost-effectiveness," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Ullah, Ihsan & Ahmad, Saeed & Rahman, Mati ur & Arfan, Muhammad, 2021. "Investigation of fractional order tuberculosis (TB) model via Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Kaushik Dehingia & Ahmed A. Mohsen & Sana Abdulkream Alharbi & Reima Daher Alsemiry & Shahram Rezapour, 2022. "Dynamical Behavior of a Fractional Order Model for Within-Host SARS-CoV-2," Mathematics, MDPI, vol. 10(13), pages 1-15, July.
    6. Han-Sol Lee & Changgyun Jin & Chanwoo Shin & Seong-Eun Kim, 2023. "Sparse Diffusion Least Mean-Square Algorithm with Hard Thresholding over Networks," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    7. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Khan, Hasib & Alam, Khurshaid & Gulzar, Haseena & Etemad, Sina & Rezapour, Shahram, 2022. "A case study of fractal-fractional tuberculosis model in China: Existence and stability theories along with numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 455-473.
    9. Elif Tan & Diana Savin & Semih Yılmaz, 2023. "A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
    10. Jun Zhang & Jingjing Zhang & Shangyou Zhang, 2023. "Explicit Symplectic Runge–Kutta–Nyström Methods Based on Roots of Shifted Legendre Polynomial," Mathematics, MDPI, vol. 11(20), pages 1-13, October.
    11. Li, Bin & Xiang, Shuhuang, 2019. "Efficient methods for highly oscillatory integrals with weakly singular and hypersingular kernels," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    12. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Batabyal, Saikat, 2021. "COVID-19: Perturbation dynamics resulting chaos to stable with seasonality transmission," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    14. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    15. SAIRA & Shuhuang Xiang & Guidong Liu, 2019. "Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory Kernel Function," Mathematics, MDPI, vol. 7(10), pages 1-11, September.
    16. Yongou Zhang & Zhongjian Ling & Hao Du & Qifan Zhang, 2023. "Finite-Difference Frequency-Domain Scheme for Sound Scattering by a Vortex with Perfectly Matched Layers," Mathematics, MDPI, vol. 11(18), pages 1-11, September.
    17. Trikha, Pushali & Mahmoud, Emad E. & Jahanzaib, Lone Seth & Matoog, R.T. & Abdel-Aty, Mahmoud, 2021. "Fractional order biological snap oscillator: Analysis and control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Yin, Xuecheng & Büyüktahtakın, İ. Esra & Patel, Bhumi P., 2023. "COVID-19: Data-Driven optimal allocation of ventilator supply under uncertainty and risk," European Journal of Operational Research, Elsevier, vol. 304(1), pages 255-275.
    19. Ishtiaq Ali & Muhammad Yaseen & Muhammad Abdullah & Sana Khan & Fethi Bin Muhammad Belgacem, 2023. "An Innovative Numerical Method Utilizing Novel Cubic B-Spline Approximations to Solve Burgers’ Equation," Mathematics, MDPI, vol. 11(19), pages 1-19, September.
    20. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4249-:d:1257674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.