IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v314y2017icp199-211.html
   My bibliography  Save this article

Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations

Author

Listed:
  • Ahmad, F.
  • Soleymani, F.
  • Khaksar Haghani, F.
  • Serra-Capizzano, S.

Abstract

A derivative-free family of iterations without memory consisting of three steps for solving nonlinear systems of equations is brought forward. Then, the main aim of the paper is furnished by proposing several novel schemes with memory possessing higher rates of convergence. Analytical discussions are reported and the theoretical efficiency of the methods is studied. Application of the schemes in solving partial differential equations is finally provided to support the theoretical discussions.

Suggested Citation

  • Ahmad, F. & Soleymani, F. & Khaksar Haghani, F. & Serra-Capizzano, S., 2017. "Higher order derivative-free iterative methods with and without memory for systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 199-211.
  • Handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:199-211
    DOI: 10.1016/j.amc.2017.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317304630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ullah, Malik Zaka & Serra-Capizzano, S. & Ahmad, Fayyaz & Al-Aidarous, Eman S., 2015. "Higher order multi-step iterative method for computing the numerical solution of systems of nonlinear equations: Application to nonlinear PDEs and ODEs," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 972-987.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cordero, Alicia & Leonardo-Sepúlveda, Miguel A. & Torregrosa, Juan R. & Vassileva, María P., 2024. "Increasing in three units the order of convergence of iterative methods for solving nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 509-522.
    2. Mozafar Rostami & Taher Lotfi & Ali Brahmand, 2019. "A Fast Derivative-Free Iteration Scheme for Nonlinear Systems and Integral Equations," Mathematics, MDPI, vol. 7(7), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fayyaz Ahmad & Shafiq Ur Rehman & Malik Zaka Ullah & Hani Moaiteq Aljahdali & Shahid Ahmad & Ali Saleh Alshomrani & Juan A. Carrasco & Shamshad Ahmad & Sivanandam Sivasankaran, 2017. "Frozen Jacobian Multistep Iterative Method for Solving Nonlinear IVPs and BVPs," Complexity, Hindawi, vol. 2017, pages 1-30, May.
    2. Howk, Cory L., 2016. "A class of efficient quadrature-based predictor–corrector methods for solving nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 394-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:314:y:2017:i:c:p:199-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.