Accelerating the convergence speed of iterative methods for solving nonlinear systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2018.03.108
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao, Xiaoyong & Yin, Hongwei, 2015. "A new class of methods with higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 300-309.
- Xiao, Xiaoyong & Yin, Hongwei, 2017. "Achieving higher order of convergence for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 251-261.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cordero, Alicia & Leonardo-Sepúlveda, Miguel A. & Torregrosa, Juan R. & Vassileva, María P., 2024. "Increasing in three units the order of convergence of iterative methods for solving nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 509-522.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhanlav, T. & Otgondorj, Kh., 2021. "Higher order Jarratt-like iterations for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 395(C).
- Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
- Ramandeep Behl & Ioannis K. Argyros, 2020. "Local Convergence for Multi-Step High Order Solvers under Weak Conditions," Mathematics, MDPI, vol. 8(2), pages 1-14, February.
- Ramandeep Behl & Ioannis K. Argyros & Sattam Alharbi, 2024. "Accelerating the Speed of Convergence for High-Order Methods to Solve Equations," Mathematics, MDPI, vol. 12(17), pages 1-22, September.
- Ramandeep Behl & Ioannis K. Argyros & Sattam Alharbi, 2024. "A One-Parameter Family of Methods with a Higher Order of Convergence for Equations in a Banach Space," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
- Cordero, Alicia & Leonardo-Sepúlveda, Miguel A. & Torregrosa, Juan R. & Vassileva, María P., 2024. "Increasing in three units the order of convergence of iterative methods for solving nonlinear systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 509-522.
- Michael I. Argyros & Ioannis K. Argyros & Samundra Regmi & Santhosh George, 2022. "Generalized Three-Step Numerical Methods for Solving Equations in Banach Spaces," Mathematics, MDPI, vol. 10(15), pages 1-28, July.
- Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
- Janak Raj Sharma & Deepak Kumar & Ioannis K. Argyros, 2019. "Local Convergence and Attraction Basins of Higher Order, Jarratt-Like Iterations," Mathematics, MDPI, vol. 7(12), pages 1-16, December.
More about this item
Keywords
Systems of nonlinear equations; Modified Newton method; Order of convergence; Higher order methods; Computational efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:333:y:2018:i:c:p:8-19. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.