A matrix-separation-based integral inequality for aperiodic sampled-data synchronization of delayed neural networks considering communication delay
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2024.129032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ji, Meng-Di & He, Yong & Wu, Min & Zhang, Chuan-Ke, 2015. "Further results on exponential stability of neural networks with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 175-182.
- Chen, Zhengquan & Hou, Yandong & Huang, Ruirui & Cheng, Qianshuai, 2024. "Neural network compensator-based robust iterative learning control scheme for mobile robots nonlinear systems with disturbances and uncertain parameters," Applied Mathematics and Computation, Elsevier, vol. 469(C).
- Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
- Sun, Yuting & Hu, Cheng & Yu, Juan & Shi, Tingting, 2023. "Synchronization of fractional-order reaction-diffusion neural networks via mixed boundary control," Applied Mathematics and Computation, Elsevier, vol. 450(C).
- Sun, Wenjing & Tang, Ze & Feng, Jianwen & Park, Ju H., 2024. "Quasi-synchronization of heterogeneous neural networks with hybrid time delays via sampled-data saturating impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
- de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
- Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
- Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
- Zeng, Hong-Bing & Zhai, Zheng-Liang & Wang, Wei, 2021. "Hierarchical stability conditions of systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 404(C).
- Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
- Wang, Chen-Rui & He, Yong & Lin, Wen-Juan, 2021. "Stability analysis of generalized neural networks with fast-varying delay via a relaxed negative-determination quadratic function method," Applied Mathematics and Computation, Elsevier, vol. 391(C).
- Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
- Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
- Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
- Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
- Yupeng Shi & Dayong Ye, 2023. "Stability Analysis of Delayed Neural Networks via Composite-Matrix-Based Integral Inequality," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
- Rakkiyappan, R. & Sharmila, V. & Janani, K. & Kashkynbayev, Ardak, 2024. "Stabilization of Takagi–Sugeno fuzzy Hidden Markov Jump Systems with memory sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 204-217.
- Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
- Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
- Gao, Zhen-Man & He, Yong & Wu, Min, 2019. "Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov–Krasovskii functional," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 258-269.
- Gyurkovics, É. & Szabó-Varga, G. & Kiss, K., 2017. "Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 164-177.
- Shao, Hanyong & Li, Huanhuan & Zhu, Chuanjie, 2017. "New stability results for delayed neural networks," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 324-334.
- Sun, Yonghui & Li, Ning & Shen, Mouquan & Wei, Zhinong & Sun, Guoqiang, 2018. "Robust H∞ control of uncertain linear system with interval time-varying delays by using Wirtinger inequality," Applied Mathematics and Computation, Elsevier, vol. 335(C), pages 1-11.
- Luo, Jinnan & Liu, Xinzhi & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Cheng, Jun, 2020. "A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 368(C).
More about this item
Keywords
Delayed neural networks; Master-slave synchronization; Aperiodic sampled-data control; Matrix-separation-based integral inequality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004934. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.