IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v404y2021ics0096300321003167.html
   My bibliography  Save this article

An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions

Author

Listed:
  • Lee, Tae H.
  • Park, Myeong Jin
  • Park, Ju H.

Abstract

In this paper, the stability problem of neural networks is addressed by considering time-varying delays. By proposing novel geometry-based negative conditions for the form of quadratic function and constructing new augmented Lyapunov-Krasovskii functionals, a novel stability criterion is derived. Finally, to show the effectiveness of the proposed criterion, several numerical examples are given.

Suggested Citation

  • Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  • Handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003167
    DOI: 10.1016/j.amc.2021.126226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321003167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Guodong & Zeng, Zhigang, 2018. "Exponential stability for a class of memristive neural networks with mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 544-554.
    2. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    3. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Tianbo & Zhu, Chunxia & Qi, Wenhai & Cheng, Jun & Shi, Kaibo & Sun, Liangliang, 2022. "Passive analysis and finite-time anti-disturbance control for semi-Markovian jump fuzzy systems with saturation and uncertainty," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    2. Yang, Tianqing & Zou, Runmin & Liu, Fang & Liu, Cai & Sidorov, Denis, 2023. "Improved stabilization condition of delayed T-S fuzzy systems via an extended quadratic function negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    3. Tang, Tianfeng & Qin, Gang & Zhang, Bin & Cheng, Jun & Cao, Jinde, 2024. "Event-based asynchronous state estimation for Markov jump memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 473(C).
    4. Liu, Guobao & Chen, Xiangyong & Shen, Zhongyu & Liu, Yajuan & Jia, Xianglei, 2022. "Reachable set estimation for continuous delayed singularly perturbed systems with bounded disturbances," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    5. Wang, Jianjun & Liu, Wen & Fu, Shihua & Xia, Jianwei, 2022. "On robust set stability and set stabilization of probabilistic Boolean control networks," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    6. Xu, Qiyi & Zhang, Ning & Qi, Wenhai, 2023. "Finite-time control for discrete-time nonlinear Markov switching LPV systems with DoS attacks," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    7. Xie, Xiangpeng & Shen, Xicheng & Peng, Chen, 2022. "Relaxed stabilization synthesis of discrete-time nonlinear systems with uplink data loss based on a novel online evaluation mechanism," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    8. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    9. Cai, Xiao & Shi, Kaibo & She, Kun & Zhong, Shouming & Kwon, Ohmin & Tang, Yiqian, 2022. "Voluntary defense strategy and quantized sample-data control for T-S fuzzy networked control systems with stochastic cyber-attacks and its application," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    10. Chang, Xu-Kang & He, Yong, 2024. "Reachable set estimation of delayed Markovian jump neural networks via variables-augmented-based free-weighting-matrices method," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    11. Shuoting Wang & Kaibo Shi & Jin Yang, 2022. "Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional," Mathematics, MDPI, vol. 10(15), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    2. Li, Xiaoqing & She, Kun & Zhong, Shouming & Shi, Kaibo & Kang, Wei & Cheng, Jun & Yu, Yongbin, 2018. "Extended robust global exponential stability for uncertain switched memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 271-290.
    3. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    4. Kwon, W. & Koo, Baeyoung & Lee, S.M., 2018. "Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 149-157.
    5. Yupeng Shi & Dayong Ye, 2023. "Stability Analysis of Delayed Neural Networks via Composite-Matrix-Based Integral Inequality," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
    6. Syed Ali, M. & Narayanan, Govindasamy & Shekher, Vineet & Alsulami, Hamed & Saeed, Tareq, 2020. "Dynamic stability analysis of stochastic fractional-order memristor fuzzy BAM neural networks with delay and leakage terms," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    7. Gao, Zhen-Man & He, Yong & Wu, Min, 2019. "Improved stability criteria for the neural networks with time-varying delay via new augmented Lyapunov–Krasovskii functional," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 258-269.
    8. Gyurkovics, É. & Szabó-Varga, G. & Kiss, K., 2017. "Stability analysis of linear systems with interval time-varying delays utilizing multiple integral inequalities," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 164-177.
    9. Meng, Xianhe & Zhang, Xian & Wang, Yantao, 2023. "Bounded real lemmas and exponential H∞ control for memristor-based neural networks with unbounded time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 66-81.
    10. Chang, Wenting & Zhu, Song & Li, Jinyu & Sun, Kaili, 2018. "Global Mittag–Leffler stabilization of fractional-order complex-valued memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 346-362.
    11. Subramanian, K. & Muthukumar, P. & Lakshmanan, S., 2018. "State feedback synchronization control of impulsive neural networks with mixed delays and linear fractional uncertainties," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 267-281.
    12. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    13. Zhang, Shuai & Yang, Yongqing & Sui, Xin & Xu, Xianyu, 2019. "Finite-time synchronization of memristive neural networks with parameter uncertainties via aperiodically intermittent adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    14. Zhang, Zhi-Ming & He, Yong & Wu, Min & Wang, Qing-Guo, 2017. "Exponential synchronization of chaotic neural networks with time-varying delay via intermittent output feedback approach," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 121-132.
    15. Zhang, Bao-Lin & Cheng, Luhua & Pan, Kejia & Zhang, Xian-Ming, 2020. "Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    16. Qian, Wei & Liu, Haibo & Zhao, Yunji & Li, Yalong, 2022. "Delay-probability-dependent state estimation for neural networks with hybrid delays," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    17. Shuoting Wang & Kaibo Shi & Jin Yang, 2022. "Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    18. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    19. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    20. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: Vector ordering approach," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:404:y:2021:i:c:s0096300321003167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.