IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v391y2021ics0096300320305853.html
   My bibliography  Save this article

Stability analysis of generalized neural networks with fast-varying delay via a relaxed negative-determination quadratic function method

Author

Listed:
  • Wang, Chen-Rui
  • He, Yong
  • Lin, Wen-Juan

Abstract

This paper studies the problem of stability analysis of generalized neural networks (GNN) with a fast-varying delay. Firstly, an improved augmented Lyapunov-Krasovskii functional (LKF) is proposed by fully considering more states information about interrelated systems and neuron activation function conditions. Then, to handle the derivative of the LKF, the generalized reciprocally convex combination and a relaxed quadratic function negative-determination are employed. Based on these methods and the augmented LKF, a less conservative delay-dependent stability criterion for GNN with a fast-varying delay is presented. Finally, some numerical examples are given to demonstrate the effective superiority of the proposed criterion.

Suggested Citation

  • Wang, Chen-Rui & He, Yong & Lin, Wen-Juan, 2021. "Stability analysis of generalized neural networks with fast-varying delay via a relaxed negative-determination quadratic function method," Applied Mathematics and Computation, Elsevier, vol. 391(C).
  • Handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320305853
    DOI: 10.1016/j.amc.2020.125631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320305853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Bao-Lin & Cheng, Luhua & Pan, Kejia & Zhang, Xian-Ming, 2020. "Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    2. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    3. Kwon, O.M. & Lee, S.H. & Park, M.J. & Lee, S.M., 2020. "Augmented zero equality approach to stability for linear systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    4. Ji, Meng-Di & He, Yong & Wu, Min & Zhang, Chuan-Ke, 2015. "Further results on exponential stability of neural networks with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 175-182.
    5. Long, Fei & Jiang, Lin & He, Yong & Wu, Min, 2019. "Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Wei & Zhang, Yongjun & Zhang, Xuanxuan, 2024. "Chaotic behavior of two discrete-time coupled neurons with two delays," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    2. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    3. Chang, Xu-Kang & He, Yong & Gao, Zhen-Man, 2023. "Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Lee, Tae H. & Park, Myeong Jin & Park, Ju H., 2021. "An improved stability criterion of neural networks with time-varying delays in the form of quadratic function using novel geometry-based conditions," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    5. Zhang, Chuan-Ke & He, Yong & Jiang, Lin & Lin, Wen-Juan & Wu, Min, 2017. "Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 102-120.
    6. Shuoting Wang & Kaibo Shi & Jin Yang, 2022. "Improved Stability Criteria for Delayed Neural Networks via a Relaxed Delay-Product-Type Lapunov–Krasovskii Functional," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    7. Li, Lingchun & Shen, Mouquan & Zhang, Guangming & Yan, Shen, 2017. "H∞ control of Markov jump systems with time-varying delay and incomplete transition probabilities," Applied Mathematics and Computation, Elsevier, vol. 301(C), pages 95-106.
    8. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    9. Wang, Bo & Yan, Juan & Cheng, Jun & Zhong, Shouming, 2017. "New criteria of stability analysis for generalized neural networks subject to time-varying delayed signals," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 322-333.
    10. Chen, Wenbin & Lu, Junwei & Zhuang, Guangming & Gao, Fang & Zhang, Zhengqiang & Xu, Shengyuan, 2022. "Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    11. Dong, Zeyu & Wang, Xin & Zhang, Xian, 2020. "A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Zhong, Qishui & Han, Sheng & Shi, Kaibo & Zhong, Shouming & Cai, Xiao & Kwon, Oh-Min, 2022. "Distributed secure sampled-data control for distributed generators and energy storage systems in microgrids under abnormal deception attacks," Applied Energy, Elsevier, vol. 326(C).
    13. Shanmugam, Lakshmanan & Joo, Young Hoon, 2023. "Adaptive neural networks-based integral sliding mode control for T-S fuzzy model of delayed nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    14. Wang, Shengbo & Cao, Yanyi & Huang, Tingwen & Wen, Shiping, 2019. "Passivity and passification of memristive neural networks with leakage term and time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 294-310.
    15. Han, S.Y. & Kommuri, S.K. & Kwon, O.M. & Lee, S.M., 2022. "Regional sampled-data synchronization of chaotic neural networks using piecewise-continuous delay dependent Lyapunov functional," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    16. Chen, Yonggang & Wang, Zidong & Liu, Yurong & Alsaadi, Fuad E., 2018. "Stochastic stability for distributed delay neural networks via augmented Lyapunov–Krasovskii functionals," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 869-881.
    17. Zeng, Hong-Bing & Zhai, Zheng-Liang & Wang, Wei, 2021. "Hierarchical stability conditions of systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    18. Vadivel, R. & Hammachukiattikul, P. & Gunasekaran, Nallappan & Saravanakumar, R. & Dutta, Hemen, 2021. "Strict dissipativity synchronization for delayed static neural networks: An event-triggered scheme," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Xiong, Lianglin & Cheng, Jun & Cao, Jinde & Liu, Zixin, 2018. "Novel inequality with application to improve the stability criterion for dynamical systems with two additive time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 672-688.
    20. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:391:y:2021:i:c:s0096300320305853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.