IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2241-d1438042.html
   My bibliography  Save this article

Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional

Author

Listed:
  • Dong-Hoon Lee

    (Korea Water Resources Corporation (K-Water), Daejeon 34045, Republic of Korea
    School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
    These authors contributed equally to this work.)

  • Yeong-Jae Kim

    (School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
    These authors contributed equally to this work.)

  • Seung-Hoon Lee

    (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea)

  • Oh-Min Kwon

    (School of Electrical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea)

Abstract

This work investigates the stability conditions for linear systems with time-varying delays via an augmented Lyapunov–Krasovskii functional (LKF). Two types of augmented LKFs with cross terms in integrals are suggested to improve the stability conditions for interval time-varying linear systems. In this work, the compositions of the LKFs are considered to enhance the feasible region of the stability criterion for linear systems. Mathematical tools such as Wirtinger-based integral inequality (WBII), zero equalities, reciprocally convex approach, and Finsler’s lemma are utilized to solve the problem of stability criteria. Two sufficient conditions are derived to guarantee the asymptotic stability of the systems using linear matrix inequality (LMI). First, asymptotic stability criteria are induced by constructing the new augmented LKFs in Theorem 1. Then, simplified LKFs in Corollary 1 are proposed to show the effectiveness of Theorem 1. Second, asymmetric LKFs are shown to reduce the conservatism and the number of decision variables in Theorem 2. Finally, the advantages of the proposed criteria are verified by comparing maximum delay bounds in four examples. Four numerical examples show that the proposed Theorems 1 and 2 obtain less conservative results than existing outcomes. Particularly, Example 2 shows that the asymmetric LKF methods of Theorem 2 can provide larger delay bounds and fewer decision variables than Theorem 1 in some specific systems.

Suggested Citation

  • Dong-Hoon Lee & Yeong-Jae Kim & Seung-Hoon Lee & Oh-Min Kwon, 2024. "Enhancing Stability Criteria for Linear Systems with Interval Time-Varying Delays via an Augmented Lyapunov–Krasovskii Functional," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2241-:d:1438042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    2. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    3. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    4. Rakkiyappan, R. & Sharmila, V. & Janani, K. & Kashkynbayev, Ardak, 2024. "Stabilization of Takagi–Sugeno fuzzy Hidden Markov Jump Systems with memory sampled-data control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 204-217.
    5. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    6. Luo, Jinnan & Liu, Xinzhi & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Cheng, Jun, 2020. "A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    7. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    8. Shen, Zhihao & Zhang, Liang & Niu, Ben & Zhao, Ning, 2023. "Event-based reachable set synthesis for delayed nonlinear semi-Markov systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    9. Abolpour, Roozbeh & Khayatian, Alireza & Dehghani, Maryam & Rokhsari, Alireza, 2023. "An Equivalent Condition for Stability Analysis of LTI Systems with Bounded Time-invariant Delay," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    10. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    11. Zhang, Bao-Lin & Cheng, Luhua & Pan, Kejia & Zhang, Xian-Ming, 2020. "Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    12. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    14. Can Zhao & Kaibo Shi & Yiqian Tang & Shouming Zhong, 2022. "A New Slack Lyapunov Functional for Dynamical System with Time Delay," Mathematics, MDPI, vol. 10(23), pages 1-11, November.
    15. Huang, Yi-Bo & He, Yong, 2022. "Bessel-type inequality in semi-inner-product spaces and its application to stability analysis of discrete-time systems with distributed delays," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    16. Liang, Xingyue & Xia, Jianwei & Chen, Guoliang & Zhang, Huasheng & Wang, Zhen, 2019. "Dissipativity-based sampled-data control for fuzzy Markovian jump systems," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 552-564.
    17. Zhang, He & Xu, Shengyuan & Zhang, Zhengqiang & Chu, Yuming, 2022. "Practical stability of a nonlinear system with delayed control input," Applied Mathematics and Computation, Elsevier, vol. 423(C).
    18. Han, Lihuan & Ma, Yuechao, 2024. "Learning-based asynchronous sliding mode control for semi-Markov jump systems with time-varying delay using relaxed negative-determination lemma," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Lee, S.H. & Park, M.J. & Kwon, O.M. & Choi, S.G., 2022. "Less conservative stability criteria for general neural networks through novel delay-dependent functional," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    20. Shenping Xiao & Jin Yu & Simon X. Yang & Yongfeng Qiu, 2022. "Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions," Mathematics, MDPI, vol. 10(17), pages 1-9, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2241-:d:1438042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.