IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v423y2022ics0096300322000947.html
   My bibliography  Save this article

Practical stability of a nonlinear system with delayed control input

Author

Listed:
  • Zhang, He
  • Xu, Shengyuan
  • Zhang, Zhengqiang
  • Chu, Yuming

Abstract

The problem of delayed input control for a nonlinear system is discussed, where the nonlinearities of nonlinear systems are not assumed as Lipschitz continuous, they can be non-Lipschitz continuous or discontinuous in this paper. Notice that as a general nonlinear system, its sub-systems may have no common equilibrium or no equilibriums, but their trajectories may still be kept near equilibriums. Motivated by this, practical stability of nonlinear systems is considered by employing the Lyapuov method. Practical stability criteria in forms of linear matrix inequalities are obtained, where improved integral inequalities are given to reduce the conservatism of the obtained results. Finally, the obtained results are applied to analyze two problems of load frequency control of a one-area networked power system with sampled input and flight control of a two-degree-freedom helicopter system. The advantage and effectiveness of our approach are shown by a comparison with the literature.

Suggested Citation

  • Zhang, He & Xu, Shengyuan & Zhang, Zhengqiang & Chu, Yuming, 2022. "Practical stability of a nonlinear system with delayed control input," Applied Mathematics and Computation, Elsevier, vol. 423(C).
  • Handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000947
    DOI: 10.1016/j.amc.2022.127008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322000947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Hong-Bing & Zhai, Zheng-Liang & Wang, Wei, 2021. "Hierarchical stability conditions of systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    2. Zhengqiang Zhang & Hao Shen & Ze Li & Shuzhen Zhang, 2015. "Zero-error tracking control of uncertain nonlinear systems in the presence of actuator hysteresis," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(15), pages 2853-2864, November.
    3. Liu, Wenhui & Lu, Junwei & Xu, Shengyuan & Li, Yongmin & Zhang, Zhengqiang, 2019. "Sampled-data controller design and stability analysis for nonlinear systems with input saturation and disturbances," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 14-27.
    4. Gao, Ming & Sheng, Li & Zhang, Weihai, 2015. "Stochastic H2/H∞ control of nonlinear systems with time-delay and state-dependent noise," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 429-440.
    5. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    6. Zeng, Hong-Bing & Liu, Xiao-Gui & Wang, Wei, 2019. "A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanmugam, Lakshmanan & Joo, Young Hoon, 2023. "Adaptive neural networks-based integral sliding mode control for T-S fuzzy model of delayed nonlinear systems," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Shenping Xiao & Jin Yu & Simon X. Yang & Yongfeng Qiu, 2022. "Stability Analysis for Time-Delay Systems via a New Negativity Condition on Quadratic Functions," Mathematics, MDPI, vol. 10(17), pages 1-9, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yi-Bo & He, Yong, 2022. "Bessel-type inequality in semi-inner-product spaces and its application to stability analysis of discrete-time systems with distributed delays," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    2. Huan, Mingchen & Li, Chuandong, 2023. "Synchronization of reaction–diffusion neural networks with sampled-data control via a new two-sided looped-functional," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    5. Chen, Jun & Park, Ju H., 2020. "New versions of Bessel–Legendre inequality and their applications to systems with time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    6. Jia, Jinping & Dai, Hao & Zhang, Fandi & Huang, Jianwen, 2022. "Global stabilization of low-order stochastic nonlinear systems with multiple time-varying delays by a continuous feedback control," Applied Mathematics and Computation, Elsevier, vol. 429(C).
    7. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    8. Xin Guo & Hejun Yao & Fangzheng Gao, 2022. "Global Prescribed-Time Stabilization of High-Order Nonlinear Systems with Asymmetric Actuator Dead-Zone," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    9. Luo, Jinnan & Liu, Xinzhi & Tian, Wenhong & Zhong, Shouming & Shi, Kaibo & Cheng, Jun, 2020. "A new approach to generalized dissipativity analysis for fuzzy systems with coupling memory sampled-data control," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    10. Zeng, Hong-Bing & Zhai, Zheng-Liang & He, Yong & Teo, Kok-Lay & Wang, Wei, 2020. "New insights on stability of sampled-data systems with time-delay," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    11. Shen, Zhihao & Zhang, Liang & Niu, Ben & Zhao, Ning, 2023. "Event-based reachable set synthesis for delayed nonlinear semi-Markov systems," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    12. Li, Hongjie & Zhu, Yinglian & jing, Liu & ying, Wang, 2018. "Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 1-15.
    13. Abolpour, Roozbeh & Khayatian, Alireza & Dehghani, Maryam & Rokhsari, Alireza, 2023. "An Equivalent Condition for Stability Analysis of LTI Systems with Bounded Time-invariant Delay," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    14. de Oliveira, Fúlvia S.S. & Souza, Fernando O., 2020. "Further refinements in stability conditions for time-varying delay systems," Applied Mathematics and Computation, Elsevier, vol. 369(C).
    15. Zhang, Bao-Lin & Cheng, Luhua & Pan, Kejia & Zhang, Xian-Ming, 2020. "Reducing conservatism of stability criteria for linear systems with time-varying delay using an improved triple-integral inequality," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    16. Shi, Shuang & Fei, Zhongyang & Shi, Zhenpeng & Ren, Shunqing, 2018. "Stability and stabilization for discrete-time switched systems with asynchronism," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 520-536.
    17. Hussain, Muntazir & Rehan, Muhammad & Ahmed, Shakeel & Abbas, Tanveer & Tufail, Muhammad, 2020. "A novel approach for static anti-windup compensation of one-sided Lipschitz systems under input saturation," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    18. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    19. Arunagirinathan, S. & Lee, T.H., 2024. "Generalized delay-dependent reciprocally convex inequality on stability for neural networks with time-varying delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 109-120.
    20. Wang, Yibo & Hua, Changchun & Park, PooGyeon & Qian, Cheng, 2023. "Stability criteria for time-varying delay systems via an improved reciprocally convex inequality lemma," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:423:y:2022:i:c:s0096300322000947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.