IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v485y2025ics0096300324004296.html
   My bibliography  Save this article

Analysis of a competitive respiratory disease system with quarantine: Epidemic thresholds and cross-immunity effects

Author

Listed:
  • Fome, Anna Daniel
  • Bock, Wolfgang
  • Klar, Axel

Abstract

Our study investigates the dynamics of disease interaction and persistence within populations, exploring various epidemic scenarios, including backward bifurcation and cross-immunity effects. We establish conditions under which the disease-free equilibrium of the model demonstrates local or global asymptotic stability, contingent on the efficacy of quarantine measures. Notably, we find that a strain with a quarantine reproduction number greater than 1 will out-compete a strain with a quarantine reproduction number less than 1, leading to its extinction under complete immunity conditions. Additionally, we identify scenarios where diseases persist in a sub-critical coexistence endemic equilibrium, despite one control reproduction number being below one. Our exploration of backward bifurcation reveals the model's capacity to accommodate the coexistence of the disease-free equilibrium with up to four endemic equilibria. Moreover, we demonstrate that the existence of cross-immunity enhances the coexistence of two strains. However, co-infections and imperfect quarantine measures pose significant challenges in containing outbreaks, sustaining the outbreak potential even with successful control of individual virus strains. Conversely, controlling outbreaks becomes more manageable in the absence of co-infections, especially with perfect quarantine measures. We conclude by advocating for public health strategies that address the complexities posed by co-infections, emphasizing the importance of simultaneously tackling multiple pathogens.

Suggested Citation

  • Fome, Anna Daniel & Bock, Wolfgang & Klar, Axel, 2025. "Analysis of a competitive respiratory disease system with quarantine: Epidemic thresholds and cross-immunity effects," Applied Mathematics and Computation, Elsevier, vol. 485(C).
  • Handle: RePEc:eee:apmaco:v:485:y:2025:i:c:s0096300324004296
    DOI: 10.1016/j.amc.2024.128968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324004296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ojo, Mayowa M. & Benson, Temitope O. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo, 2022. "Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Miguel Fudolig & Reka Howard, 2020. "The local stability of a modified multi-strain SIR model for emerging viral strains," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-27, December.
    3. Gavin J. D. Smith & Dhanasekaran Vijaykrishna & Justin Bahl & Samantha J. Lycett & Michael Worobey & Oliver G. Pybus & Siu Kit Ma & Chung Lam Cheung & Jayna Raghwani & Samir Bhatt & J. S. Malik Peiris, 2009. "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic," Nature, Nature, vol. 459(7250), pages 1122-1125, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Arturo Ruiz Estrada & Evangelos Koutronas & Donghyun Park & Alam Khan & Muhammad Tahir, 2023. "The impact of COVID-19 on the economic performance of Wuhan, China (2019–2021)," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(1), pages 847-862, February.
    2. Igor Balaz & Taichi Haruna, 2018. "Evolution Of Influenza A Nucleotide Segments Through The Lens Of Different Complexity Measures," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-24, August.
    3. Guo, Zun-Guang & Sun, Gui-Quan & Wang, Zhen & Jin, Zhen & Li, Li & Li, Can, 2020. "Spatial dynamics of an epidemic model with nonlocal infection," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    4. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    5. Adesoye Idowu Abioye & Olumuyiwa James Peter & Emmanuel Addai & Festus Abiodun Oguntolu & Tawakalt Abosede Ayoola, 2024. "Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(4), pages 3475-3495, August.
    6. Cecilia Solér, 2012. "Conceptualizing Sustainably Produced Food for Promotional Purposes: A Sustainable Marketing Approach," Sustainability, MDPI, vol. 4(3), pages 1-47, March.
    7. Wu, Yucui & Zhang, Zhipeng & Song, Limei & Xia, Chengyi, 2024. "Global stability analysis of two strains epidemic model with imperfect vaccination and immunity waning in a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. Ojo, Mayowa M. & Peter, Olumuyiwa James & Goufo, Emile Franc Doungmo & Nisar, Kottakkaran Sooppy, 2023. "A mathematical model for the co-dynamics of COVID-19 and tuberculosis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 499-520.
    9. Goulas, Sofoklis & Megalokonomou, Rigissa, 2016. "Swine Flu and The Effect of Compulsory Class Attendance on Academic Performance," MPRA Paper 75395, University Library of Munich, Germany.
    10. Shanshan Chen & Yijun Ran & Hebo Huang & Zhenzhen Wang & Ke-ke Shang, 2022. "Epidemic Dynamics of Two-Pathogen Spreading for Pairwise Models," Mathematics, MDPI, vol. 10(11), pages 1-18, June.
    11. Omame, Andrew & Abbas, Mujahid, 2023. "Modeling SARS-CoV-2 and HBV co-dynamics with optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    12. Finlay Campbell & Anne Cori & Neil Ferguson & Thibaut Jombart, 2019. "Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:485:y:2025:i:c:s0096300324004296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.